IoT = Internet of Trees

Fitbit for bonzai

Fitbit for Bonsai Trees

I’ve been working on a project to wirelessly track the temperature, light level and soil moisture of my bonsai tree, so I can track its progress and know when to water (and more importantly, when not to).

… The picture above is of the first prototype, built out on a permaproto board with a huge enclosure and a wired connection to the sensors. This prompted my previous blog post on the Wixel in general and how to get it to sleep in low power modes to maximize battery life. I also experimented with a solar panel to provide power which worked nicely in direct sunlight but would need to be augmented with a big capacitor and a harvesting set up to cope with San Francisco’s cloudy days (and nights!), so I decided to go in a different direction – to operate with low power draw and in a small package using a single AA battery, and eventually to swap out the Wixel and use a CC2511 directly on the device itself.


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



1 Comment

  1. Hi
    I’m actually trying to build something very similar. I used the electric imp as basis, connecting the sensors directly to the breadboard.
    But in the end I’m struggling with the same problem – power supply. There is a sleep and low power mode available using the imp, but it seems with AA batteries that does not really help.
    I played around with different sequenced for data reading and data submitting (read and collect the data every 15 minutes, but send it only once every two hours). But still this is no real improvement.
    In the end I came up with two versions – a monitoring device with AA batteries and a monitoring device with growth light using a 5v DC power supply.
    If you like to, have a look at my blog, where I try to document on my progress (electricgardener.net). Ideas and power saving tipps are highly welcome :-).

Sorry, the comment form is closed at this time.