0

Force Sensitive Resistors are for squeezing! Massive tutorial AND they’re in stock!

Fsrmetertesting
What is a Force Sensitive Resistor?
FSR’s (Force Sensitive Resistors) are basically a resistor that changes its resistive value (in ohms Ω) depending on how much its pressed. These sensors are fairly low cost, and easy to use but they’re rarely accurate. They also vary some from sensor to sensor perhaps 10%. So basically when you use FSR’s you should only expect to get ranges of response. While FSRs can detect weight, they’re a bad choice for detecting exactly how many pounds of weight are on them…

Some basic stats
These stats are specifically for the Interlink 402, but nearly all FSRs will be similar. Checking the datasheet will always illuminate any differences

  • Size: 1/2″ (12.5mm) diameter active area by 0.02″ thick
  • Price $7.00 from the Adafruit shop
  • Resistance range: Infinite/open circuit (no pressure), 100KΩ (light pressure) to 200Ω (max. pressure)
  • Force range: 0 to 20 lb. (0 to 100 Newtons) applied evenly over the 0.125 sq in surface area
  • Power supply: Any! Uses less than 1mA of current (depends on any pullup/down resistors used and supply voltage)
  • Datasheet (note there are some mathematical inconsistancies in here)

How to measure force/pressure with an FSR
As we’ve said, the FSR’s resistance changes as more pressure is applied. When there is no pressure, the sensor looks like an infinite resistor (open circuit), as the pressure increases, the resistance goes down. This graph indicates approximately the resistance of the sensor at different force measurements. (Note that force is not measured in grams and what they really mean is Newtons / 100!)

Resistanceforce

Read more

Pt 1953
We put together a MASSIVE tutorial on what they are, how to use them and example code for use with Arduino. You can view the tutorial here “FSR Force Sensitive Resistors are for squeezing!”.

Fsr402 Lrg
…and pick’em up at the Adafruit store – Force-Sensitive Resistor (FSR).


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Rethink Robotics closes shop. Long live collaborative robots #makerbusiness

Wearables — Cleaning is key

Electronics — Any USB port in a storm?

Biohacking — Biohacking : Sports Drinks Compared

Python for Microcontrollers — CircuitPython @ Hackaday SuperCon #ICYMI @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



1 Comment

  1. Here’s an autocalibrate sketch for the Arduino for use with FSRs and LDRs that I kind of beat together a month or so ago.

    http://duinolab.blogspot.com/2009/05/autocalibrate-and-analog-sensors.html

Sorry, the comment form is closed at this time.