0

Experiment finally proves 100-year-old thought experiment is possible


Experiment finally proves 100-year-old thought experiment is possible

A similar machine was first proposed in 1912 by the Polish physicist Marian Smoluchowski. In his thought experiment, he suggested that tiny moving particles could generate enough force to spin a windmill-type paddle. A locking mechanism such as a pawl could prevent backward motion, forcing the wheel to move in the forward direction only.

However, several years later, physicist Richard Feynman argued that, in reality, the bouncing beads would not be capable of doing meaningful work. Feynman showed that, since the entire system operates at the same temperature, a pawl would occasionally slip off the wheel. As a result, the system would generate zero net movement.

Now, physicist Devaraj van der Meer from the University of Twente and his colleagues have demonstrated that such a machine can in fact spin the paddles forward only, generating a positive net movement. The details of their study will be published in an upcoming issue of Physical Review Letters.

Looking somewhat like a high-speed lotto machine, the new system consists of a vigorously shaken platform that causes 2,000 small glass beads to bounce around. When the beads make contact with the vanes of a windmill-like device inside the machine, the vanes move, turning a rod, which rotates a sensor.

Well, that’s finally settled once and for all…


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Rethink Robotics closes shop. Long live collaborative robots #makerbusiness

Wearables — Cleaning is key

Electronics — Serial overkill

Biohacking — Biohacking Resources – Books, Talks and Podcasts

Python for Microcontrollers — CircuitPython @ Hackaday SuperCon #ICYMI @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



4 Comments

  1. hmm maybe a nanomachine could use this principal to create energy or do work based on brownian motion

  2. @zool: I believe this was in fact the original proposal, which Feynman suggested would fail if the ratchet was in thermal equilibrium with the particles meant to be driving it. This is not the case for the machine shown in the video – which is probably why it is able to work.

  3. Half way through it starts moving backwards.. Is the pawl failing or is there something else more devious at work.

  4. Any machine that is using heat transfer, is actually using kinetic energy of the particles.

Sorry, the comment form is closed at this time.