We needed a datalogger that provided a timestamp, and that would last 2 weeks in the woods. Using a laptop would require a generator or humongous battery. This Instructable shows how to make a datalogger from an Arduino and datalogger shield connected to a TelosB wireless sensor board and a battery that is large, but not wheelbarrow large. Your data goes onto a SD memory card on the datalogger for pickup later (whenever you have to change the batteries on all the wireless radios in your network, for example). The main challenge is getting the serial signal out of the TelosB before it gets translated into USB. We could probably have reprogrammed the TelosB to output the serial on another pin, but why program when you can solder?
You can get going quickly – saving data to files on any FAT16 or FAT32 formatted SD card, to be read by any plotting, spreadsheet or analysis program. We even have a tutorial on how to use two free software programs to plot your data The included Real Time Clock timestamps all your data with the current time, so that you know precisely what happened when!
Please note that this item does not come with an Arduino (you’ll need one to use with the shield), or an SD card. It does come with the RTC battery, however. The kit is un-assembled, You’ll need some basic soldering skills to put it together, but even if you don’t have much experience you can get it done in under 1 hour.
SD card interface works with FAT16 or FAT32 formatted cards. 3.3v level shifter circuitry prevents damage to your SD card
Real time clock (RTC) keeps the time going even when the Arduino is unplugged. The battery backup lasts for years
Included libraries and example code for both SD and RTC mean you can get going quickly
Prototyping area for soldering connectors, circuitry or sensors.
Onboard 3.3v regulator is both a reliable reference voltage and also reliably runs SD cards that require a lot of power to run
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!