Batteries – A to Z of Electronics

Batteries – A to Z of Electronics… The history and technology in batteries by Jeri Elsworth. This is part of our A – Z electronics series, we are sponsoring these videos for Jeri to create, we love these!

Most of us became familiar with what batteries do when we were just small children with all our battery-operated toys. But the history of its invention is packed with drama and uncertainty.

Artifacts were discovered outside of Baghdad that resemble batteries. They consisted of a terracotta pot with a copper cylinder and an iron rod held in place with an insulator. Some believe if they were filled with fruit juices, they would produce a small current. The most intriguing part of the story is that it pre-dates the official invention of the battery by at least 1500 years. Currently, there’s no definitive way to determine what these were really used for.

In the late 1700s, Luigi Galvani, a professor of anatomy, was performing experiments on frogs, trying to prove their testicles were in their legs. He made the observation that their legs would twitch when touched by a statically charged scalpel. He spent the next ten years performing experiments, and found that touching unlike metals simultaneously across the legs would cause them to twitch. He concluded that there were three types electricity: friction, lightning, and his newly discovered animal electricities.

But not everyone agreed with them. Alessandro Volta, a professor of physics, a self-proclaimed genius, and a ladies’ man was convinced there was only one type of electricity. I want the frog legs. He started his own experiments, and quickly discovered that frog tissue was not the source of electricity, but a sensitive detector. He found that he could use salt water-soaked felt in place with the frog tissue and still produce electricity.

He believe that he discovered an unlimited source of electricity that came from the tension of two dissimilar metals, and the corrosion of the salt water was only an annoyance. Because of this belief, his primitive batteries, or voltaic piles, have extra plates on the top and bottom.

We now know that the current is generated by a process of oxidation and reduction. Oxidation occurs at the more reactive electrode, and reduction happens at the less reactive electrode. The electrode that’s being oxidized will be consumed, and positive ions will diffuse away from it. Depending on the chemistry of the cell, at the reduction electrodes, sometimes gas is formed, and other times, it’s plated, and negative ions diffuse away. Externally in the circuit, the electrons flow from the oxidation electrode to the reduction electrode.

This is the electrical symbol for a battery. The small line is the negative terminal. See the resemblance?

This is a partial list of the activity series of metals, lithium being the most active, and gold being the least. The more active a metal, the more likely it will lose electrons and oxidize. To the right, you can see the standard oxidation potential in volts. In a perfect world, you can use these numbers to calculate out the voltage of your cell, depending on the electrodes you choose. If we chose zinc and copper, the difference would be about one volt.

You can create your own voltaic cell at home very easily with two dissimilar pieces of metal and a piece of paper soaked in vinegar. The bottom plate is a piece of copper. I’m not exactly sure what the washer is made of. When I test with the volt meter, I can see that it’s 0.8 volts.

We can tell that the washer is the anode, because the volt meter will indicate with a negative sign if the leads are hooked up backwards. Cells like this have a disadvantage, because they continue to react, even when current isn’t flowing.

An improved cell would have electrodes surrounded by a solution that only reacts when current is flowing. This can be achieved by using a salt bridge with a permeable membrane that allows ions to pass. Rechargeable batteries are very similar to one time use batteries. The difference is, the chemistry can be reversed, restoring the electolytes and the electrodes.

Lead acid is an example of this type of battery. During discharge, the electrodes are turned from lead and lead oxide to lead sulfate, and during charging, it’s returned back to lead and lead oxide and sulfuric acid.

You can increase the voltage of a battery by adding more cells stacked in series. I’ll demonstrate this by hooking 40 9-volt batteries together.

Oops. I’d better get some bigger electrodes.

If you need to increase current, you can put batteries in parallel. This is effectively making their plates a larger surface area.

Here I’m shorting a fine wire across the leads of the 9-volt battery. Not much happening. Now we see smoke when I hook two batteries in parallel, and short the lead. And with three batteries, it’s far too much current for such a small wire, and it immediately melts.

Well, I hope you liked the video about batteries. I had a great time putting it together, and I want to think my sponsors at Adafruit Industries. It’s their concept for this. Be sure to drop them a note and let them know that you like this, and better yet, buy something from them. You might check out their MintyBoost, which is a boost converter so you can charge USB devices from double A batteries.

You can always reach me at [email protected]. I love hearing from you guys. Send me your suggestions.

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !


  1. Great, just great.

  2. Great! I am looking forward to the whole series. Just today I had been talking about how the open hardware community has a different approach to spreading knowledge and this is a wonderful example!

  3. Awesome video!

    Is there a chance you could create a tag for the “A to Z of Electronics” series? It’d make it easier to watch all the videos in order in the future.

    I vote for ‘AtoZ’. 🙂

  4. done

  5. Fantastic, Jeri!

    I’m a high school teacher and would love to show these to my students when I start doing electronics with Arduino, etc. (which I do buy from Adafruit, of course!)

    Your explanations and visualizations are very clear, although perhaps a bit fast for a classroom setting, depending on the language skills of the students? I’m not sure about that.

    In any event, our school has a special program for deaf and hard-of-hearing students and I have a few of those students in my class. Having captions on the videos would make it a lot easier for them.

    I wonder if there is any way to get that to happen?

    Short of that, having the text of your narration available for them to read ahead of time or afterwords would be helpful (to them and their interpreters).

    Many thanks — looking forward to additional episodes!


  6. Loving the new A to Z series. This is a great idea, and presented very well.

    I look forward to the rest of the alphabet.

Sorry, the comment form is closed at this time.