Largest earthquake in the history of Japan…


680 20110311-Tsunamiwaveheight

Our thoughts are with all of our friends and partners in Japan – so far we’ve heard back that everyone is safe. The biggest recorded earthquake hit Japan and thanks to a lot of great engineering and smart building codes millions of lives were likely saved. Above a photo of from The Big Picture. The worst is not over, the tsunami has hit – so there’s flooding and quake damage. The Red Cross has information if you’re looking to contact a family member or you’d like to assist in some way.

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !


  1. That photo of the road is amazing. How on earth did the quake manage to split the road exactly in half along the curve?

  2. I’m no civil engineer, but that’s most likely due to the lanes being paved separately and not as a whole.

  3. That’s really weird. Like creepy weird.

  4. Alan Taylor, the fellow who originally started The Big Picture at, now runs “In Focus” over at The Atlantic, and has a photo spread similar to the one Big Picture ran (and has been updating it throughout the day):

    Google has put together an incredible resource center, including an ad-hoc service to help coordinate people who are looking for loved ones, and people who have information about those who are missing:

  5. The road split in the middle because that is the weakest point. The paving rollers don’t compress the middle like they do the actual lanes, which means the middle is more porous and likely to break. The road gave way in the middle, and the earth below it simply followed along the same line.

    I was thinking about this today, even before I saw this picture. I was on a stretch of road and I noticed the center of the road was cracked, pitted and crumbling, while the rest of the road was fine.

  6. @Rudisimo
    Until I come across better analysis, that’s pretty much the only explanation I can come up with. It’s an important engineering lesson in stress risers. The roadway is laid down in two 8ft lanes (standard hot tarmac surfacing machine width) with a seam where the two lanes abut. The tarmac is usually about 8 inches thick. This vertical seam being the weakest part of the road surface, the roadway unzipped along the center with the downhill side suffering semi-liquefaction at depth and earthflow. The upper side had the support from the earth cut that produced it and didn’t move as much.

    Kind of like scoring glass for a clean break.

  7. And to get off being a materials geek, this is a call to find reputable causes and donate to help rebuild.

    Especially if you live in the US Pacific Northwest, this is a wakeup call. We sit on the Juan de Fuca Plate subduction zone, which can in a worst case scenario, let go from Vancouver Island, BC to Cape Mendocino, CA in an 8.9-9.2 quake.

    And if you can get the bathymetric and above wave height maps from NOAA, you can overlay them in Photoshop and check out how sea mounts can bend, magnify and direct the tsunami action. The red plume (above) headed towards the Oregon-California boarder gets started by the surge from Sendai being bent around the Koko Seamount into a pile of water that then kind of gets refracted by the lower edge of the Hess Rise to follow along the Mendocino escarpment and Mendocino ridge. It ended with us getting hit with 8-9 feet of harbor wave which did quite a bit of damage in Brookings, OR and Crescent City, CA. Our harbors had all the docking ripped out and quite a few boats demolished and sunk.

  8. In Tohoku, as in other parts of rural Japan, there are still many one-lane roads. It would not surprise me if the original roadbed was one lane – later widened to two.

Sorry, the comment form is closed at this time.