0

Maker improves our open source hardware wearables!

5965042473 75Abfe97Dc Z

Via the forums, Scott writes

The iCufflinks use an Atmel ATtiny4 microcontroller (MCU) as the brains to controlling the LED lighting pattern. The MCU is an 8-bit processor with 32 bytes of SRAM, only a handful of registers, and 512 bytes of flash for program storage. The stack is stored in the SRAM so you don’t really get to use it for anything.

The original hardware design and software are all open source and can be found on the Adafruit GitHub. One of the things about the design is that it runs on CR1220 batteries and it is recommended that they be changed after 24 hours of use. That is what got me thinking that I could improve this product to increase the amount of time between battery changes.

I have also never read nor written assembly code for an AVR processor and the last time I probably looked at assembly was 386 stuff about 20 years ago. So excuse any minor assembly style issues. I was temped to rewrite the code in C but with the limited flash space I had to rule this out. Had this been a ATtiny9 with 1k bytes I would have gone this route. The small overhead that AVR Studio introduces was just a tiny bit too much for this limited memory space.

READ MORE

This is a great example of how well open source hardware can work, Scott was able to recreate and improve our wearable electronics product(s) – it’s being modded and improved and it’s only been out a few weeks.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Rethink Robotics closes shop. Long live collaborative robots #makerbusiness

Wearables — Cleaning is key

Electronics — Serial overkill

Biohacking — Biohacking Resources – Books, Talks and Podcasts

Python for Microcontrollers — CircuitPython @ Hackaday SuperCon #ICYMI @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.