Here is a stab at the Arduino compatible Sanguino board (albeit simplified). It’s pretty standard except we’ve removed the reset circuitry and alot of the pins. We still have 4 controllable pins, one for the LED and three spare for something fun in future. Once again the plastic was printed before dropping in pre-tinned components and finally printing the metal tracks. I have previously done some tests which show we need to have a radius on each corners of printed tracks, ideally at least 1.5mm, but for compactness I squared these off resulting in poorer quality but nevertheless its quite a big step forward from where we were a few years ago. Four extra tracks are required on a second layer to get the circuit fully working; I’ve done this manually for the time being. In addition I had to manually solder in 2/3 pins as the track had not connected properly, however I think I can correct this by extending sections of track beyond their required endpoints and utilising the bigger radii at corners that I’ve already mentioned. It’s still a little blobby, but nevertheless here it is working running a simple blink program, although we can still reflash the chip to do something else with the spare pins.
Really impressive work. It will be interesting to see how fine of tracks can be printed as the process gets fine-tuned. Maybe someday we will all be able to make multi-layered 3D printed circuit boards at home.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Open Hardware is In, New CircuitPython and Pi 5 16GB, and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey