Adafruit will not be shipping orders Thanksgiving Day, Thursday November 22, 2018. Expedited orders placed after 11am ET Wednesday November 21 will go out Friday November 23.
0

Happy Birthday Gottfried Leibniz!

Today is the 366th birthday of Gottfried Leibniz. From Wolfram ScienceWorld:

German philosopher, physicist, and mathematician whose mechanical studies included forces and weights. He believed in a deterministic universe which followed a “pre-established harmony.” He extended the work of his mentor Huygens from kinematics  to include dynamics. He was self-taught in mathematics, but nonetheless developed calculus independently of Newton. Although he published his results slightly after Newton, his notation was by far superior (including the integral sign and derivative notation), and is still in use today. It is unfortunate that continental and English mathematicians remained embroiled for decades in a heated and pointless priority dispute over the discovery of calculus.

Leibniz made many contributions to the study of differential equations, discovering the method of separation of variables, reduction of homogeneous equations to separable ones, and the procedure for solving first order linear equations. He used the idea of the determinant 50 years before Cramer, and did work on the multinomial theorem.

Leibniz combined the Scala Naturae with his plenum (continuous) view of nature, and called the result the Law of Continuity. He believed that it was not possible to put organisms into discrete categories, stating “Natura non facit saltus” (Nature does nothing in leaps).

Leibniz was a strong believer in the importance of the product of mass times velocity squared which had been originally investigated by Huygens and which Leibniz called vis viva, the living force. He believed the vis viva to be the real measure of force, as opposed to Descartes’s force of motion (equivalent to mass times velocity, or momentum). It is not entirely clear why Leibniz should have chosen mv2 as this quantity rather than Descartes’mv, but he was apparently led to the conclusion that his quantity was the more fundamental by mechanical arguments. Leibniz’s contention that vis visa, not Descartes’s quantity, was the most fundamental conserved quantity comes extremely close to an early statement of the Law of Conservation of Energy in mechanics. Since, however, the conservation of quantity of motion had become one of the pillars of Cartesian natural philosophy, Leibniz’s suggestion that the fundamental quantity of motion was different from the one Descartes had proposed was rejected out of hand by all good Cartesians. A great controversy ensued between the German school of physical thought, which naturally supported Leibniz, and the French and English schools, whose Cartesians and Newtonians opposed him. In identifying vis viva as the fundamental quantity of motion, Leibniz was searching for some active principle that was conserved and kept the universe from “running down.”

A longer, somewhat more prosaic version of his biography can be found here.

Related posts: The Birth of Calculus


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,700+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Bill Gross’s 7 lessons to help you and your business succeed

Wearables — Emphasize the light

Electronics — = != ==.

Biohacking — The Exercise Connection to Ketones and BDNF

Python for Microcontrollers — Python powers costumes, and community @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



2 Comments

  1. Ah, happy birthday, Leibniz. Making basic linear DEs and related rates problems trivial since the 1600s.

  2. Thanks. Very interesting and informative.

Sorry, the comment form is closed at this time.