The Shepard Test Stand is a test stand for Estes rocket motors. It is named after Alan Shepard, America’s first astronaut, as it is our first test stand. We anticipate using an Arduino board to provide the physical interface between the data collecting computer and the required sensors. This project is the first in a series of projects to develop the required skills for the practice of safe rocket engine operation, and to develop the capability to measure and record data about a rocket engine’s performance. The use of Estes class motors provides a relatively safe environment to learn in before moving to higher powered motors and engines. The ultimate vision is to develop test stands for full scale liquid rocket engines for use in orbital launch systems.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Open Hardware is In, New CircuitPython and Pi 5 16GB, and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey
The test stand in the video is measureing thrust. You can get a crude approximation of the thrust of a rocket motor using your bathroom scale.
Or you can use something like a force-sensitive resistor (https://www.adafruit.com/products/166) connected to an arduino and sampled at (small) discrete time steps to get a much better idea what the thrust curve of a given rocket motor looks like.
Also, kudos to whoever made that video. Their range safty was very nearly textbook perfect. 🙂
What is this actually measuring? Does anyone have any documentation on what a shepard test stand is?
The test stand in the video is measureing thrust. You can get a crude approximation of the thrust of a rocket motor using your bathroom scale.
Or you can use something like a force-sensitive resistor (https://www.adafruit.com/products/166) connected to an arduino and sampled at (small) discrete time steps to get a much better idea what the thrust curve of a given rocket motor looks like.
Also, kudos to whoever made that video. Their range safty was very nearly textbook perfect. 🙂