Voting resources, early voting, and poll worker information - VOTE. ... Adafruit is open and shipping.
0

Data Logging Model Rocket Engines on the Shepard Test Stand #OHS

The Shepard Test Stand is a neat way to strap on a model rocket engine and log data from an Arduino. The Shepard Test Stand is on display at the Open Hardware Summit.

The Shepard Test Stand is a test stand for Estes rocket motors. It is named after Alan Shepard, America’s first astronaut, as it is our first test stand. We anticipate using an Arduino board to provide the physical interface between the data collecting computer and the required sensors. This project is the first in a series of projects to develop the required skills for the practice of safe rocket engine operation, and to develop the capability to measure and record data about a rocket engine’s performance. The use of Estes class motors provides a relatively safe environment to learn in before moving to higher powered motors and engines. The ultimate vision is to develop test stands for full scale liquid rocket engines for use in orbital launch systems.



Adafruit has had paid day off for voting for our team for years, if you need help getting that going for your organization, let us know – we can share how and why we did this as well as the good results. Here are some resources for voting by mail, voting in person, and some NY resources for our NY based teams as well. If there are additional resources to add, please let us know – adafruit.com/vote

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 24,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — To make it through a tough business cycle, layoffs should be a last resort

Wearables — Turn into a ghost

Electronics — Multimeter Peaks

Python for Microcontrollers — Python on Microcontrollers Newsletter: M.2 Boards, VSCode for CircuitPython and more! #Python #Adafruit #CircuitPython #ElectronicHalloween @micropython @ThePSF

Adafruit IoT Monthly — Matrix Portal, Solar Lawn Sprinkler and more!

Microsoft MakeCode — micro:bit version 2 Announced!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — JP’s Product Pick of the Week 10/27/20 BME680 VOC Sensor @adafruit @johnedgarpark #adafruit #newproductpick

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



2 Comments

  1. What is this actually measuring? Does anyone have any documentation on what a shepard test stand is?

  2. The test stand in the video is measureing thrust. You can get a crude approximation of the thrust of a rocket motor using your bathroom scale.

    Or you can use something like a force-sensitive resistor (https://www.adafruit.com/products/166) connected to an arduino and sampled at (small) discrete time steps to get a much better idea what the thrust curve of a given rocket motor looks like.

    Also, kudos to whoever made that video. Their range safty was very nearly textbook perfect. 🙂

Sorry, the comment form is closed at this time.