The history and culture of the molding industry has been to pull out every trick possible to work around design, resin, tooling, processing, and testing issues once the mold arrives. It is time to rewrite history.
A pressure-loss study is a short-shot study on a mold to check the fill pattern for air traps, flow-front acceleration, uniform filling, and balance of fill. Note the high pressure loss in the sprue and runner. It’s good to find problems like these when the mold is still under warranty.
The arrival of a new tool always brings a certain level of excitement. Often it is late and everyone is in a rush and pressured to produce “good” parts. So the history and culture of the molding industry has been to pull out every trick possible to work around design, resin, tooling, processing, and testing issues. Burns? No problem, just slow the injection rate. Flash, color streaks, blush, shrink, warp, etc.? No worries. We spend hours on profiling, fixturing, trimming, and other tricks of the trade to get around these problems.
The result of this approach is often a few good parts but no real process that meets the production level, quality, or profits expected. Even worse, one of these good parts produced “by luck” is often waved around by your boss, who wants to know why, since the mold can “obviously” produce good parts, can’t you get the process to run? This leads to even more experimentation, which wastes time, resin, and money.
Is there a better approach? Sure, but since each tool is unique and has its own peculiarities, it’s tough to have a standardized way of doing things. That said, there are certain requirements and tests that all tools should pass before any parts are sent out.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Raspberry Pi Products, 503 CircuitPython Libraries and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey