voxeljet builds Aston Martin models for James Bond film Skyfall #3dthursday

FinishedAstonMartins

Great 3D printing story from Skyfall, the latest James Bond film: the printing of “body doubles” for the destruction of the priceless classic Bond Aston Martin DB5, via 3ders.org:

“Propshop commissioned us to build three plastic models of the Aston Martin DB5. We could have easily printed the legendary sports car in one piece at a scale of 1:3 using our high-end VX4000 printer, which can build moulds and models in dimensions of up to eight cubic metres. But the British model builders were pursuing a different approach. To ensure that the Aston Martin was as true to detail as possible, and for the purpose of integrating numerous functions into the film models, they decided on an assembly consisting of a total of 18 individual components. The entire body is based on a steel frame, almost identical to how vehicles were assembled in the past,” says voxeljet CEO Dr. Ingo Ederer.

voxeljet started the printing process once the CAD data for all components were available. The models are produced with the layer-wise application of particle material that is glued together with a binding agent. The plastic material PMMA is used for this purpose; it is ideally suited for precisely these types of tasks. The individual components that are made of PMMA feature outstanding attention to detail, but are also very stable and resilient, which means that they are well suited for mechanical post-processing.

Following the unpacking process, which involves the removal of unbound material from the finished components, voxeljet’s service centre looked very much like a body shop. A total of 54 individual parts for the three vehicle models, including mudguards, doors, bonnets, roofs and more, now had to be safely packaged and transported to Pinewood Studios near London.

Read More.

PrintedAstonMartinFront

PrintedAstonMartinBack

(Plastic parts of the Aston Martins ©Propshop Modelmakers Ltd)


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has thrilled us at Adafruit with its passion and dedication to making solid objects from digital models. Recently, we have noticed that our community integrating electronics projects into 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you take considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless EL Wire and LED projects that are possible when you are modeling your projects!

The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! If you have a cool project you’ve made that joins the traditions of 3D printing and electronics, be sure to send it in to be featured here!


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.