0

Math Professor Invents Non-Reversing Mirror

From techfragments:

When you look in a normal mirror, the image you see of yourself is in reverse. But a mirror invented by Drexel University mathematics professor Dr. R. Andrew Hicks shows you your face without reversing its image. Other trick mirrors can show a non-reversed image to a viewer by locating two mirrors at right angles, such that looking at the glass shows basically a reflection of a reflection. The Hicks non-reversing mirror is different- it is one single, smooth curved piece of glass which shows a non-reversed image.

Hicks’s work with remarkable mirrors gained media attention this past summer when one of his inventions, a driver’s side mirror that eliminates the blind spot with minimal distortion, received a U.S. Patent. The curved driver’s side mirror has a field of view of about 45 degrees, compared with 15 to 17 degrees of view in a regular driver’s side mirror. (“Wide angle substantially non-distorting mirror” United States Patent 8180606)

Now his non-reversing mirror is getting another kind of attention. It is now on display as part of an art exhibition in a New York City gallery by artist Robin Cameron, who was inspired by Hicks’s story after she discovered it through online research. Hicks and Drexel University have loaned her the non-reversing mirror for use in her group of artworks entitled “P-R-O-C-E-S-S-E-S.”

“The mirror specifically relates to this particular grouping of work because it is about process. I wanted to know more about what leads someone to make a non-reversing mirror,” Cameron said.

(love the Isaac Newton shoutout in the photo above)


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Electronics manufacturing is a burger of complexity

Wearables — Battery wash cycle

Electronics — How to make your own magnetic field probe!

Biohacking — The State of DNA Analysis in Three Mindmaps

Python for Microcontrollers — Getting Started with Adafruit Circuit Playground Express

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



2 Comments

  1. I think they’re overstating the ‘invention’ part of this, isn’t it a well-known optical technique? As soon as I saw the headline and before I saw the article or the photo I thought “it’s just a curved mirror, isn’t it?” And I’m no physicist/optical engineer/thingo.

    You can see the same effect by looking into a spoon.

  2. @perlun: I suggest you read the entire article, which explains where this ‘invention’ part comes in. This isn’t a simple concave mirror.

Sorry, the comment form is closed at this time.