Ten Simple Rules for the Open Development of Scientific Software

Adafruit 964

PLOS Computational Biology: Ten Simple Rules for the Open Development of Scientific Software.

Open-source software development has had significant impact, not only on society, but also on scientific research. Papers describing software published as open source are amongst the most widely cited publications (e.g., BLAST, and Clustal-W), suggesting many scientific studies may not have been possible without some kind of open software to collect observations, analyze data, or present results. It is surprising, therefore, that so few papers are accompanied by open software, given the benefits that this may bring.

Publication of the source code you write not only can increase your impact, but also is essential if others are to be able to reproduce your results. Reproducibility is a tenet of computational science, and critical for pipelines employed in data-driven biological research. Publishing the source for the software you created as well as input data and results allows others to better understand your methodology, and why it produces, or fails to produce, expected results. Public release might not always be possible, perhaps due to intellectual property policies at your or your collaborators’ institutes; and it is important to make sure you know the regulations that apply to you. Open licensing models can be incredibly flexible and do not always prevent commercial software release.

Simply releasing the source under an open license, however, is not sufficient if you wish your code to remain useful beyond its publication. The sustainability of software after publication is probably the biggest problem faced by researchers who develop it, and it is here that participating in open development from the outset can make the biggest impact. Grant-based funding is often exhausted shortly after new software is released, and without support, in-house maintenance of the software and the systems it depends on becomes a struggle. As a consequence, the software will cease to work or become unavailable for download fairly quickly, which may contravene archival policies stipulated by your journal or funding body. A collaborative and open project allows you to spread the resource and maintenance load to minimize these risks, and significantly contributes to the sustainability of your software.

If you have the choice, embracing an open approach to development has tremendous benefits. It allows you to build on the work of other scientists, and enables others to build on your own efforts. To make the development of open scientific software more rewarding and the experience of using software more positive, the following ten rules are intended to serve as a guide for any computational scientist.

Read more.


Halloween season is here!
Halloween season is here! Check out all the posts, gift guides, and more!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NewProducts Featuring Adafruit RP2350 22-pin FPC HSTX to DVI Adapter for HDMI Displays!

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — Garden Lights, Bluetooth 6.0, and more!

Maker Business – Adafruit Daily — A look at Boeing’s supply chain and manufacturing process

Electronics – Adafruit Daily — When do I use X10?

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.