I2C Programming on the Raspberry Pi with Go

George McBay as a detailed guide on how to get some Adafruit 8×8 LED Matrices working with the Raspberry Pi using the Go language.

I2C is a two-wire serial bus interface historically used to communicate between different components of an electronics device on the same circuit board.  Amidst the rise in hobbyist/open electronics and the “Internet of Things”, I2C has also become popular as a well-defined communication technology between off-the-shelf electronic project components of the type commonly sold at Adafruit, Sparkfun, and Newark.  Accelerometers, NFC chips, LED displays, and many other types of devices are available using this interface, allowing hackers to easily communicate bidirectionally with special-purpose components from their micro-controller or full-fledged computer projects.

One example of such a component that is fun to play with is the Adafruit 8×8 LED Matrix w/I2C Backpack.  This device is pretty much exactly what it sounds like, 64 LEDs arranged 8×8 that can be individually controlled over an I2C interface via an HT16K33 integrated circuit.  Starting with a few of these devices and a Raspberry Pi, I decided to delve into what it would take to drive the LEDs from my favorite language, Go.

I started by soldering the LED matrix devices to their backpacks as described here:


and hooking one up to the Raspberry Pi as described here:


Adafruit provides great support for controlling these devices and others that they carry from within Python code (available via GitHub (https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code) and this code works well for spot-checking that the device has been successfully connected and is in working order.  All of my soldering went okay and the device worked (though I did have to modify the Python code slightly because at the time it assumed it would be driving a LED matrix on I2C bus 0, but it should have been using bus 1 because the I2C bus number designations flipped around the time the newer 512MB Raspberry Pi devices became available and my Pi is a 512MB model).

There is a whole lot more to the guide, so be sure to check it out here.

What’s better than a single LED? Lots of LEDs! A fun way to make a small display is to use an 8×8 matrix or a 4-digit 7-segment display. Matrices like these are ‘multiplexed’ – so to control 64 LEDs you need 16 pins. That’s a lot of pins, and there are driver chips like the MAX7219 that can control a matrix for you but there’s a lot of wiring to set up and they take up a ton of space. Here at Adafruit we feel your pain! After all, wouldn’t it be awesome if you could control a matrix without tons of wiring? That’s where these adorable LED matrix backpacks come in. We have them in two flavors – a mini 8×8 and a 4-digit 0.56″ 7-segment. They work perfectly with the matrices we stock in the Adafruit shop and make adding a bright little display trivial.

In Stock and Shipping Now!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.