January 29, 2013 AT 9:00 am

Stanford Researchers Break Million-core Supercomputer Barrier


From Stanford University:

Stanford Engineering’s Center for Turbulence Research (CTR) has set a new record in computational science by successfully using a supercomputer with more than one million computing cores to solve a complex fluid dynamics problem—the prediction of noise generated by a supersonic jet engine.

Joseph Nichols, a research associate in the center, worked on the newly installed Sequoia IBM Bluegene/Q system at Lawrence Livermore National Laboratories (LLNL) funded by the Advanced Simulation and Computing (ASC) Program of the National Nuclear Security Administration (NNSA). Sequoia once topped list of the world’s most powerful supercomputers, boasting 1,572,864 compute cores (processors) and 1.6 petabytes of memory connected by a high-speed five-dimensional torus interconnect.

Because of Sequoia’s impressive numbers of cores, Nichols was able to show for the first time that million-core fluid dynamics simulations are possible—and also to contribute to research aimed at designing quieter aircraft engines.

Read more.


Check out all the Circuit Playground Episodes! Our new kid’s show and subscribe!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Learn resistor values with Mho’s Resistance or get the best electronics calculator for engineers “Circuit Playground”Adafruit’s Apps!

Maker Business — Profile on iFixit (repair/takedowns and more)

Wearables — This one’s for all the Cosplayers out there

Electronics — Capacitor ESR

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

1 Comment

  1. You’d think it would have better graphics (just joking).

Sorry, the comment form is closed at this time.