The meter is a relatively old piece of hardware, and I knew its accuracy might not be perfect. In particular, I couldn’t count on voltage and needle position to map to one another linearly. In other words, if the needle could move through a 90 degree range of motion, it would be a mistake to assume that a 50% voltage would leave the needle pointing at the 45 degree position. So I wrote some calibration code that slowly swings the needle through its full range. The user hits a key when the needle passes the markers on the meter’s gauge. By remembering what the PWM setting was at the time of each keypress, a calibration file can be generated. In the future, you can just decide which number on the gauge you want to display, and the support library does some simple arithmetic to interpolate between recorded calibration points, putting the needle just where it ought to be.
So I had flexible meter. What did I want to measure? Well, a big part of Sunlight’s mission is measuring political influence, of course, and this seemed like a nice way to highlight the capabilities and limits of the data that government provides. So, with help from Jacob, I adapted one of the techniques used by his Lobbyist Registration Tracker. Every few minutes a Python script running on the Pi fills out a form on the Senate Office of Public Records website, and counts how many new registrations have shown up this week. Unfortunately, the SOPR site only seems to post new registrations once per day (though there are some strange exceptions to the usual schedule — we’re still waiting to hear back from them about why this is). Still, over the course of a week the numbers add up and the delays become less important. We sure would prefer real-time disclosure, though…
At any rate, the needle slowly ticks up from zero starting on Sunday morning. If it hits 90, an amber LED that I added to the meter turns on. And if the meter maxes out at 100, it turns red. With the software working, all that was left was to change the labeling on the meter to reflect its new capabilities. I scanned the original label, and in seemingly no time Amy had vectorized and modified it into the lovely variation you can see below:
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!