Are you building a giant LED display for your hackerspace or Burning Man and need a way to control multiple kilometers of LED strips? Are you tired of running massive USB hubs of Teensys for each row? Then you might be interested in my LEDscape code for the BeagleBone Black to drive up to 500 meters of WS2811 RGB LED strips at 30fps.
On the Teensy 3, Paul’s OctoWS2811 makes very clever use of three DMA engines to generate the bit-train for the WS2811 LED strips, but only supports up to eight strips. Beth’s FadeCandy improves on Paul’s work and has a great frame rate with beautiful interpolation (and a custom USB protocol to pump pixels fast enough to keep up with the frame rate), but the temporal dithering and expanded colorspace features run into memory limitations at strips with 64 pixels.
The BeagleBone Black has far more memory than the embedded AVRs (512MB versus 16KB) and the AM335x ARM Cortex-A8 has a killer feature: two built in PRU (“Programmable Realtime Units”). These are embedded real-time microcontrollers built into the ARM core with full DMA to main memory and control over all of the IO pins. This afternoon I hacked up a quick proof of concept in PRU assembly that use one of the units to drive 32 of the WS2811 strips at full speed with zero CPU load and easy double-buffering of the image. The best parts of writing for the ARM instead of the AVR is that there aren’t any issues with running out of memory for image processing and there is built-in ethernet for OSC or other visualization libraries.
The drawback to the BeagleBone is that the 3.3V signals won’t travel very far for large scale displays. Matt Mets (of Blinkiverse and Blinkitape kickstarter) and I are designing a “cape” to add 32 RS485 drivers to translate them to differential signals for longer runs. Add in art-net support and it will be part of an awesome DMX/VJ system.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!