A color organ was a staple of the music scene in the 1970s and is still in use today at concerts and select home theaters.
The principle is simple: flash colored lights in step with music or other sounds.
Color organs sample sound and flash lights based either the sound intensity or frequency. The higher end units use analog or digital signal analysis to determine the sound energy in selective parts of the frequency spectrum and flash the lights accordingly.
The Adafruit Ampli-Tie project, using FLORA, has two different algorithms to light a string of Neopixel LEDsaccording to sound intensity. We will reuse much of the first Ampli-Tie algorithm’s code. The more complex algorithm uses a good deal of floating point math, which is too large to fit on a Trinket or Gemma. The simpler algorithm fits with room to spare, using integer math. The code is slightly modified to give the effect one may want in a color organ. The user may alter this code to produce other effects for their own projects.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!