We are very excited about some of the new projects that we’ve been working on as well as the projects that the littleBits community members are coming up with. In this post, we will showcase robots that react to their environments in a variety of ways and rely on no programming whatsoever. The following robots are able to navigate a space and each depends on a different set of sensors to do so.
Through a combination of LEGO and littleBits, we were able to create a super smart cockroach that reacts to its environment just like a real one would. It is able to navigate tricky spaces and it scurries when it is exposed to light. When it finds a dark place to hide, it lays low and stays put.
How it works:
Navigation – The two bend sensors act as sensing antennas to help the cockroach navigate its surroundings. When the cockroach approaches a wall, the closest bend sensor will be activated. This will cause the opposite wheel to stop spinning due to the inverter before the dc motor, steering the cockroach away from the wall.
Shadow Seeking – The cockroach has two light triggers. The light trigger is set on light mode, so when each of the sensors sees light, the wheels spin. When a light trigger sees darkness, it’s corresponding wheel stops spinning, making it so the cockroach turns toward the darkness. If both light sensors are in the darkness, the cockroach stops moving completely.
This smart little creature roams the table on a central wheel that is connected to a dc motor. Little plastic arms activate three roller switches on the side as they bump into cups and bowls, causing the robot to turn and try elsewhere. This happens because there is an inverter in between the first dc motor and a second dc motor positioned on the edge. More info about the circuit here.
This project, submitted by one of our community members, is a vehicle that is able to follow the twists and turns of a line made from black tape. It has two bright LEDs, two light sensors, and two dc motors. It works by illuminating the floor’s surface with the bright LEDs. The light sensors then pick up the reflected light from the floor. Lighter-colored surfaces (the floor) reflect more light than dark surfaces (the black tape). When one of the light sensors senses the lower reflectivity of the black tape, its corresponding dc motor slows down, thus turning the vehicle and keeping it on track.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 9.2.1, What is DMA, PyConUS 2025 and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey