“reverberating across the divide” between the digital and the physical:
There is still a palpable disconnect between how one designs in the digital realm, and how one realizes a design in the physical realm. A number of factors contribute to this gap, including a virtual environment’s infinite scale, its autonomy from a tangible context, and its lack of physical materiality. Reverberating Across the Divide addresses such issues through a custom vision-based modeling software that uses a 3D scanning/sensing/printing workflow to merge digital processes in design with physical processes in fabrication.
The modeling interface uses a three phase workflow (3D scanning, 3D modeling, and 3D printing) to enable a designer to appropriate a physical context for their digital designs. This digital-physical workflow begins in the scanning phase, which imports a physical context into the virtual environment. A depth camera translates a physical space or object into a three-dimensional point cloud. The point cloud is used as a persistent reference on which to base a digital design; it gives a sense of scale and materiality to an otherwise empty virtual space. The modeling phase creates an expressive digital form around the previously scanned context. The same depth camera is used to continuously capture a designer’s realtime hand gestures. These gestures then manipulate an animate digital geometry within a chronomorphologic modeling environment. The designer aggregates the animate 3D model to create complex geometries around the 3D scanned context. The printing phase then translates the digital geometry into physical matter. Once the geometry is 3D printed, the digitally fabricated artifact can then be immediately embedded into the physical environment.
The chronomorphologic modeling environment facilitates rapid generation of baroque and expressive spatial forms that both respond and expand on existing physical contexts. By mediating 3D scanning and 3D printing through the modeling environment, the designer has a streamlined workflow for oscillating between virtual and analog environments. These complimentary behaviors — transcribing bits into atoms, and atoms into bits — create a closed loop in which a designer can recursively generate imaginative digital forms to integrate back into the built environment. Moreover, the ease in shifting between digital design and physical production provides a framework for rapidly exploring how subtle changes in the virtual environment, physical environment, or designer’s gestures can create dynamic variation in the formal, material, and spatial qualities of a generated design….
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!
Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!
The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! If you’ve made a cool project that combines 3D printing and electronics, be sure to let us know, and we’ll feature it here!