New solvent-cast 3D printing technique raise potential of printing antennas #3DThursday #3DPrinting #3D

Pasted Image 2 5 14 10 04 PM

New solvent-cast 3D printing technique raise potential of printing antennas. Shared by 3Ders.org:

The solvent-cast 3D printing technology is a highly versatile microfabrication technique that can be used to fabricate 3D geometries at room temperature. It was developed to produce various geometries such as straight filaments, towers, layer-by-layer scaffolds, and freeform circular spirals by the robotic deposition of a polymer solution ink onto a moving stage.

The research work, by Shuang-Zhuang Guo, under the supervision of professors Daniel Therriault and Marie-Claude Heuzey at École Polytechnique de Montréal, Canada, makes the cover of the prestigious journal Small.

Under applied pressure, an ink material which undergoes capillary shear flow inside the micronozzle, relaxes its stresses upon exiting the nozzle. The ink material is a fast-drying thermoplastic solution composed of dichloromethane (DCM) and ~30wt% of polylactic acid (PLA). As the solvent evaporates post extrusion, the diameter of the filament decreases and its rigidity gradually increases with time due to a locally higher polymer concentration.

This rigidity gradient enables the creation of self-supporting curved shape by changing the moving path of the extrusion nozzle, in which the filament bending occurs in the low rigidity zone of the newly extruded material. After most of the solvent evaporation, the rigidity of the extruded filament changes from fluid-like to solid-like, which facilitates the shape retention of the deposited self-supporting features. For successful printing of 3D freeform structures, the viscoelastic properties of the polymer solution and the solvent evaporation rate have to be set to ensure proper ink rheological behavior while providing a fast solvent evaporation. This 3D printing process enables the creation of different multifunctional microsystems featuring complex geometries….

Read more.


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! We also offer the MakerBot Digitizer in our store. If you’ve made a cool project that combines 3D printing and electronics, be sure to let us know, and we’ll feature it here!


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 9/13/2024 Featuring Adafruit Feather RP2350 with HSTX Port! (Video)

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — IoT Vulnerability Disclosure, Decorative Dorm Lights, and more!

Maker Business – Adafruit Daily — A look at Boeing’s supply chain and manufacturing process

Electronics – Adafruit Daily — Autoscale is cheating!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.