Nanogenerator Film Implant Powers Biomedical Devices From Heartbeats
Researchers have introduced a new nanogenerator capable of collecting energy from biological contractile movements, such as a beating heart, for use in powering medical implants like pacemakers. From Nanotechweb:
Implanted biomedical devices, such as heart-rate monitors, pacemakers, defibrillators and neural stimulators, rely on some form of battery power to work. And although these batteries have become smaller and much more efficient in recent years, they still only last a few years and need to be regularly replaced – something that requires the patient to undergo surgery. Not exactly an ideal situation.
The best solution to this problem would be to do away with batteries altogether. A team led by John Rogers has now gone some way in addressing this issue with its new device based on lead zirconate titanate (PZT) nanoribbons. PZT has a high piezoelectric voltage and dielectric constant – ideal properties for converting mechanical energy into electrical energy. The material is also highly bendable and mechanically strong.
The device works by harnessing the natural contractile and relaxation motions of the heart, lung and diaphragm, and converting these into electricity. And the good news is that the generator produces more than enough electricity to power implants such as pacemakers, for example. As well as being deployed inside the body, the same technology might even be used to make wearable health monitors if placed directly on the skin, says Rogers.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey