Moss FM is the world’s first totally plant powered radio. Developed by Swiss engineer Fabienne Felder in collaboration with Cambridge University scientists Dr. Paolo Bombelli and Ross Dennis, Moss FM works using an aesthetically pleasing lineup of moss plants as a “Photo Microbial Fuel Cell.” The fuel cell acts as a sort of biological solar panel and harvests electrons produced from the photosynthesis of the moss and converts them into electricity, even when no light is available.
In order to grow, plants photosynthesise – they use solar energy to convert water and carbon dioxide into sugars. The photosynthetic process, in simple terms, consists of two stages. In the first, light-dependent stage, plants split water – oxygen is released and electrons and protons are produced. In the second, light-independent stage, plants then ingest carbon dioxide to convert those electrons and protons into sugars.
Now, here’s why mosses operate as potentially better photo-active components in Photo-MFCs than other plants: Mosses are as efficient in the first stage of photosynthesis as other plants. But they grow slowly, which means they are less efficient at converting the produced electrons and protons into sugars in the second stage – leaving us with bigger potential to collect and transform electrons into electrical current.
The researchers acknowledge that this type of technology is still in its infancy and the total amount of harvested energy is limited, but hope to develop it further to increase its efficiency for larger scale use. As Felder notes, the impact of this sustainable energy source has some significant potential.
If 25% of Londoners (ca. 2.7 million people) charged their mobile phone on average for 2 hours every other day with moss, we would save enough electricity to power a small town: 42.5 million kWh, amounting to a saving of £6.81 Million and 39632 Tons of CO2* a year. These are interesting values, given the huge amounts of electricity that are wasted during generation and transmission, for example. And even more interesting, if we consider that at the moment we capture only about 0.1% of the electrons the mosses potentially produce.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Raspberry Pi Products, 503 CircuitPython Libraries and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey