Optical data storage has virtually unlimited lifetime


Via Phys.org

Data stored on today’s CDs and DVDs has a lifetime of several decades before the physical material begins to significantly decay. Researchers are working on prolonging the lifetime of stored data, but so far reaching even 100 years has been challenging. Now in a new study, researchers have demonstrated a data storage technique that has a lifetime of about 3 x 1020 years at room temperature—virtually unlimited—which could lead to a new era of eternal data archiving.

The researchers, Jingyu Zhang, Mindaugas Gecevičius, Martynas Beresna, and Peter G. Kazansky at the University of Southampton in the UK, have published a paper in a recent issue of Physical Review Letters on the new data storage technique.

As the scientists explain, there is a general tradeoff in data storage between lifetime and capacity, so that media that store larger amounts of information tend to have shorter lifetimes. For example, physicists have demonstrated the possibility of storing vast amounts of data with individual atoms, yet the storage time is a mere 10 picoseconds at room temperature.

The new optical data storage technique presented here provides both excellent lifetime and capacity. To record data, a femtosecond (fs) laser delivers ultrashort (280-fs, with 1 fs = 10-15 seconds) light pulses onto a piece of quartz. The light pulses create nanogratings—tiny dots—in the quartz, with each dot carrying three bits of information. This triple storage is possible because the laser performs multilevel encoding, so that the dots encode the intensity and polarization of the light in three layers of the quartz. Applying this technique, a disc the size of a CD or DVD with about 1000 layers has a data capacity of hundreds of terabytes, compared with hundreds of megabytes for today’s commercial discs.

To determine the lifetime of the optical data storage system, the researchers subjected the information to accelerated aging to obtain the decay rate. The underlying mechanism of decay is the collapse of nanovoids that exist between the nanogratings; when the nanovoids collapse, the nanogratings become unstable and lose their stored data.

The researchers calculated that the decay time of the nanogratings, and thus the lifetime of the data storage system, is about 3 x 1020 years at room temperature, indicating unprecedented high stability. The lifetime decreases at elevated temperatures, but even at temperatures of 462 K (189° C, 372° F), the extrapolated decay time is 13.8 billion years, comparable to the age of the Universe.

Read more.


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Biohacking — The Heart Rates of the Hazda

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

1 Comment

  1. Note that the decay time from the article is actually 3 x 10^20, not 3 x 1020. I think the original article uses a superscript tag that was lost in whatever Adafruit uses to post content.

Sorry, the comment form is closed at this time.