Researchers Spin Fishing Line into Super Muscles


Scientists have developed artificial muscles that are 100 x stronger than human muscles using fishing line. Via Discover Magazine.

Scientists at the University of Texas at Dallas have designed super strong artificial muscles by simply twisting and coiling ordinary fishing line. The coiled muscles can lift more than 100 times the weight of a human muscle of the same size, and generate as much mechanical power per kilogram as a jet engine — perhaps offering an inexpensive new material to move prosthetics and robotic exoskeletons.

Creating the muscles is simple: Researchers use a tool similar to a hand drill to twist different sizes of fishing line to the point of coiling. The twist allows the thread to function like torsional muscle that can lift heavy loads. Depending on the direction of the coil, the artificial muscles will expand and contract with temperature changes, which can be produced by electricity, water, light or chemical reactions of fuels.

For example, a homochiral muscle will contract when heated and expand when cooled. Coiled in the opposite direction, a heterochiral muscle will expand when heated and contract when cooled. The coiled muscles can spin a heavy rotor more than 10,000 revolutions per minute when uncoiling. Researchers tested various widths of polymer coils using several techniques to activate expansion and contraction of the coils. They report these findings in Science.

“The work capacity of these muscles is remarkable,” Baughman said. “The power generation capability can be about five times that of a combustion engine in your car.”

In the quest for artificial muscles Baughman has worked with many materials, including carbon nanotube yarns, but he says high-strength polymers are promising for their strength, affordability and availability.

Read more.

Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Biohacking — The Heart Rates of the Hazda

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.