We used dweet.io to connect a foosball table to the Internet during an IoT workshop at Hyperwerk Basel. The main advantage of the service is that it also works without authentication, that it’s trivial to use for everyone who can send a simple Web request, that it’s based on the open JSON standard and that it adds timestamps to entries. As we used Arduinos with either an Ethernet shield or CC3000 WiFi modules, SSL encryption was not an option for us. When we found that dweet.io enforces SSL through redirects and contacted support, the nice folks at Bug Labs immediately adapted their service to enable our use case.
Here’s how it works: Each goal bay is equipped with an Internet-connected Arduino, a PIR sensor to detect goals, and a button to “undo” goals that do not count under the local foosball rules. On startup or reset, the goal counter is set to 0. If a goal is detected, the counter is incremented….
Adafruit CC3000 WiFi Shield with Onboard Ceramic Antenna: The CC3000 hits that sweet spot of usability, price and capability. It uses SPI for communication (not UART!) so you can push data as fast as you want or as slow as you want. It has a proper interrupt system with IRQ pin so you can have asynchronous connections. It supports 802.11b/g, open/WEP/WPA/WPA2 security, TKIP & AES. A built in TCP/IP stack with a “BSD socket” interface. TCP and UDP in both client and server mode, up to 4 concurrent sockets. It does not support “AP” mode, it can connect to an access point but it cannot be an access point. We carefully wrapped this little silver module into an Arduino shield. We also added a microSD socket and a reset button. It has an onboard 3.3V regulator that can handle the 350mA peak current, and a level shifter to allow 3 or 5V logic level. The antenna layout is identical to TI’s suggested layout and we’re using the same components, trace arrangement, and antenna so the board maintains its FCC emitter compliance (you’ll still need to perform FCC validation for a finished product, but the WiFi part is taken care of). Even though it’s got an onboard antenna we were pretty surprised at the range, as good as a smartphone’s. (read more)
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Diving into the Raspberry Pi RP2350, Python Survey Results and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey