In the need of my new homemade energy saving fireplace (which boils water for the radiator) i designed and built a digital thermostat. The idea to design my own thermostat came when i came across with the following problem.
When i first fire the fireplace the water in the boiler around the fireplace is cool. After a few minutes the fireplace warms the water enough so that the water temp exceeds the thermostat limit. The thermostat changes state and drives an electric valve to move the water from the fireplace boiler to the radiators. The electric valve is slow enough and takes a few minutes to make a full turn. While the water is moving from the fireplace boiler to the radiators, circularly cool water is coming back in the fireplace boiler from the radiators. Τhe water temp in the fireplace boiler is getting cooler and after a few minutes falls under thermostat’s limit. The thermostat changes state and stops the valve from driving the water to radiators. This happens again and again until the whole amount of water in the radiators is get warm.
To prevent this problem from opening and closing the electric valve in so small time spaces i designed a thermostat that can delay the sample points. It check’s the fireplace boiler temp and drives the electric valve once the water temp exceeds the thermostat limit. After that it waits for a half hour or more and then checks the water temp again….
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A Fabulous Year for Python on Hardware and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey