0

New technique allows particles to switch the quantum state of each other

NewImage

Via SciTechDaily.

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles — one that could help in the development of powerful quantum computing systems.

The new technique, described in a paper published today in the journal Nature, allows researchers to couple a lone atom of rubidium, a metal, with a single photon, or light particle. This allows both the atom and photon to switch the quantum state of the other particle, providing a mechanism through which quantum-level computing operations could take place.

Moreover, the scientists believe their technique will allow them to increase the number of useful interactions occurring within a small space, thus scaling up the amount of quantum computing processing available.

“This is a major advance of this system,” says Vladan Vuletić, a professor in MIT’s Department of Physics and Research Laboratory for Electronics (RLE), and a co-author of the paper. “We have demonstrated basically an atom can switch the phase of a photon. And the photon can switch the phase of an atom.”

That is, photons can have two polarization states, and interaction with the atom can change the photon from one state to another; conversely, interaction with the photon can change the atom’s phase, which is equivalent to changing the quantum state of the atom from its “ground” state to its “excited” state. In this way the atom-photon coupling can serve as a quantum switch to transmit information — the equivalent of a transistor in a classical computing system. And by placing many atoms within the same field of light, the researchers may be able to build networks that can process quantum information more effectively.

“You can now imagine having several atoms placed there, to make several of these devices — which are only a few hundred nanometers thick, 1,000 times thinner than a human hair — and couple them together to make them exchange information,” Vuletić adds.

Read more.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Rethink Robotics closes shop. Long live collaborative robots #makerbusiness

Wearables — Cleaning is key

Electronics — Serial overkill

Biohacking — Biohacking Resources – Books, Talks and Podcasts

Python for Microcontrollers — CircuitPython @ Hackaday SuperCon #ICYMI @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.