0

STEM Resources for Educators from the Museum of Science and Industry in Chicago #makereducation

WindTurbine 1

The Museum of Science and Industry in Chicago offers great resources for STEM educators on their site. On of our favorites is this Wind Turbine Tutorial:

Lesson at a glance
Students will learn how thermal energy transforms to mechanical energy, and how mechanical energy transforms to electrical energy. They’ll generate electrical energy by building a small-scale, functioning wind turbine, and will make and test predictions about what turbine set ups will create the most electrical energy.

Background information
Wind is caused by differences in pressure created by the uneven heating of Earth’s surface by the sun. Radiation from the sun causes land to gain thermal energy. The air above the land also gains thermal energy and expands, becoming less dense and rising.

This movement causes an area of low pressure at the surface, creating a vaccuum that draws air in. Cooler, denser air flows toward the low pressure area at the surface to fill in the space left by the risen, heated air. This creates a convection current and thermal energy is transformed into kinetic mechanical energy in the form of moving air or wind.

A wind turbine transforms the mechanical energy of wind into electrical energy. A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator. A generator works as an inverse of an electric motor; instead of aplying electrical energy to turn it and create mechanical energy, it uses mechanical energy to turn and create electrical energy. Generators spin coiled wire around magnets to create an electrical current.

WindTurbine 7

Read more.


Adafruit_Learning_SystemEach Tuesday is EducationTuesday here at Adafruit! Be sure to check out our posts about educators and all things STEM. Adafruit supports our educators and loves to spread the good word about educational STEM innovations!


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Despite multiple bankruptcies, RadioShack continues to find ways to keep the lights on

Wearables — Molding with glue

Electronics — A few words on inductor resistance

Biohacking — Running Blades

Python for Microcontrollers — Help bring CircuitPython to other languages!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.