0

DARPA’s Z-Man Program Allows First Human Ever to Climb Like a Gecko

Gecko-Edit

Employing their gecko inspired technology, DARPA has successfully demonstrated a 218 pound man’s ability to climb a vertical glass surface carrying an additional 50 pound load using nothing more than a set of hand held paddles. From DARPA:

A gecko is able to climb on glass by using physical bond interactions—specifically van der Waals intermolecular forces—between the spatulae and a surface to adhere reversibly, resulting in easy attachment and removal of the gecko’s toes from the surface. The van der Waals mechanism implied that it is the size and shape of the spatulae tips that affect adhesive performance, not specific surface chemistry. This suggested that there were design principles and physical models derived from nature that might enable scientists to fabricate an adhesive inspired by gecko toes.

Humans, of course, have much more weight to carry than a gecko. One of the initial challenges in developing a device to support human climbing was the issue of scaling: a typical Tokay gecko weighs 200 grams, while an average human male weighs 75 kilograms. To enable dynamic climbing like a gecko at this larger scale required that the engineers create climbing paddles capable of balancing sufficient adhesive forces in both the shear (parallel to the vertical surface) and normal (perpendicular to the vertical surface) directions. That feature is necessary for a climber to remain adhered on a surface without falling off while in the act of attaching and detaching the paddles with each movement.

The Draper Laboratory team was also challenged to create novel micro- and nanofabrication technologies to produce the high-aspect-ratio microstructures found in the gecko toe. In the process of achieving that capability, the Z-Man performers transformed the fundamental design and development of reversible adhesives for potential biomedical, industrial, and consumer applications.

Read more.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 10,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — The sustainability of open source software

Wearables — The final environment

Electronics — Voltage drop from cables

Biohacking — Three DIY Photobioreactor Designs for Algae Growing

Python for Microcontrollers — Python snakes its way to Codecademy, beta 7, games, calculators, turning 6 and more! #Python #Adafruit #CircuitPython @circuitpython @micropython @ThePSF @Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.