0

A history of videogame hardware: Sega Saturn

A history of videogame hardware: Sega Saturn @ Edge

Sega’s plans for the Saturn were drawn up in 1992, under the codename Giga Drive. The decision was made to use CD-ROM technology for its games, and the machine was specifically designed to better the 3DO, the only other 32- bit console available at the time. The internal architecture was based on Sega’s Model 1 arcade hardware, adapted by its creator Hideki Sato and his team. A number of prototypes were built in 1993 and, as the team approached a design they were happy with, the name was changed from Giga Drive to Aurora and, finally, Saturn.

However, this machine was very different to the one that would launch almost two years later. In December 1993, almost a year before the Saturn’s planned launch, Sony revealed the system specifications of Ken Kutaragi’s PlayStation project. These alluded to 3D graphical capabilities that matched Sega’s cutting edge arcade hardware, and the capacity to handle complex 2D processing, too.

When Sega CEO Hayao Nakayama obtained a copy of the PlayStation system specs and compared them to those of his company’s Saturn prototype he called an emergency meeting with his R&D department. One staff member reportedly said of the meeting that his boss was “the maddest I’ve ever seen him”. Nakayama was furious at the way in which Sony had bettered his own machine. Sato was charged by Nakayama to ‘fix’ the Saturn so it could compete with the PlayStation. With less than a year till launch, Sato handpicked a team of 27 Sega engineers to start work. There was no time to commission a new chip for the machine, so Sega was forced to look to existing components. The team opted for a dual-processor architecture, despite the fact that Sega’s US head Tom Kalinske had contacted Silicon Graphics, one of the companies behind the PlayStation’s 3D capabilities, to research a simpler single chip design. Allegedly, Nakayama opted for the dual-processor design as a favour to an old golfing buddy at Hitachi.

Read more.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Rethink Robotics closes shop. Long live collaborative robots #makerbusiness

Wearables — Cleaning is key

Electronics — Any USB port in a storm?

Biohacking — Biohacking : Sports Drinks Compared

Python for Microcontrollers — CircuitPython @ Hackaday SuperCon #ICYMI @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.