New superconductor world record set

NewImage

Science Daily posted about this breakthrough in superconductors on their site.

A world record that has stood for more than a decade has been broken by a team led by University of Cambridge engineers, harnessing the equivalent of three tonnes of force inside a golf ball-sized sample of material that is normally as brittle as fine china.

The Cambridge researchers managed to ‘trap’ a magnetic field with a strength of 17.6 Tesla — roughly 100 times stronger than the field generated by a typical fridge magnet — in a high temperature gadolinium barium copper oxide (GdBaCuO) superconductor, beating the previous record by 0.4 Tesla. The results are published today in the journal Superconductor Science and Technology.

The research demonstrates the potential of high-temperature superconductors for applications in a range of fields, including flywheels for energy storage, ‘magnetic separators’, which can be used in mineral refinement and pollution control, and in high-speed levitating monorail trains.

Superconductors are materials that carry electrical current with little or no resistance when cooled below a certain temperature. While conventional superconductors need to be cooled close to absolute zero (zero degrees on the Kelvin scale (or -273 °C) before they superconduct, high temperature superconductors do so above the boiling point of liquid nitrogen (-196 °C) which makes them relatively easy to cool and cheaper to operate.

Superconductors are currently used in scientific and medical applications, such as MRI scanners, and in the future could be used to protect the national grid and increase energy efficiency, due to the amount of electrical current they can carry without losing energy.

The current carried by a superconductor also generates a magnetic field, and the more field strength that can be contained within the superconductor, the more current it can carry. State of the art, practical superconductors can carry currents that are typically 100 times greater than copper, which gives them considerable performance advantages over conventional conductors and permanent magnets.

The new record was achieved using 25 mm diameter samples of GdBCO high temperature superconductor fabricated in the form of a large, single grain using an established melt processing method and reinforced using a relatively simple technique. The previous record of 17.2 Tesla, set in 2003 by a team led by Professor Masato Murakami from the Shibaura Institute of Technology in Japan, used a highly specialised type of superconductor of a similar, but subtly different, composition and structure.

Read more.


As 2022 starts, let’s take some time to share our goals for CircuitPython in 2022. Just like past years (full summary 2019, 2020, and 2021), we’d like everyone in the CircuitPython community to contribute by posting their thoughts to some public place on the Internet. Here are a few ways to post: a video on YouTub, a post on the CircuitPython forum, a blog post on your site, a series of Tweets, a Gist on GitHub. We want to hear from you. When you post, please add #CircuitPython2022 and email circuitpython2022@adafruit.com to let us know about your post so we can blog it up here.

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 32,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — Pololu’s account of the chip shortage

Wearables — Monster-inspired costuming!

Electronics — How to make your own magnetic field probe!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Raspberry Pi Pico turns one and more! #Python #CircuitPython @micropython @ThePSF

Adafruit IoT Monthly — 2021 in Recap!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — JP’s Product Pick of the Week — 4pm Eastern TODAY! 1/25/22 @adafruit @johnedgarpark #adafruit #newproductpick

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.