These 3D-Printed Bio-Bots Are Powered By Real Muscle Cells
Researchers have successfully created a biologically powered robot by 3D printing a simple skeleton, growing skeletal mouse muscle on it, and stimulating its movement using an electrical field to stimulate muscle contraction. They believe it could be possible to take further steps to replace the electrical field with motor neurons in the future and to supply the muscle with food and oxygen in a small closed system to create something that resembles a biological organism. Creepy? Amazing? Maybe both? From Motherboard:
The biologically powered robot—known as bio-bot—has a hydrogel skeleton composed of a flexible connecting beam and two protruding poles. Cells are grown in between these two poles, as demonstrated in a new study published in PNAS.
The researchers used skeletal muscle cells for an extra robust muscle strip. They also optimized the flexibility of the 3D printed skeleton’s beam by changing its porousness.
To stimulate the muscles to contract, the bio-bot was placed in a liquid dish with a bi-polar electrical field. When electricity is pulsed, it’s sufficiently similar to our motor neurons’ signaling to cause protein expression and muscle contraction.
To make it move, they had to print a new skeleton. They found the pillars needed to be different heights to generate momentum. When this skeleton was placed in the bi-polar electrical field dish, it created the same crawling movement you see with an inchworm.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!