DARPA Awards Funds for Development of World’s First Neural Device to Restore Memory


DARPA has awarded up to $2.5 million to Lawrence Livermore National Laboratory to fund their development of an implantable device capable of recording and stimulating neurons in the brain to restore old memories and access old ones as well. From Science Daily:

The research builds on the understanding that memory is a process in which neurons in certain regions of the brain encode information, store it and retrieve it. Certain types of illnesses and injuries, including Traumatic Brain Injury (TBI), Alzheimer’s disease and epilepsy, disrupt this process and cause memory loss. TBI, in particular, has affected 270,000 military service members since 2000.
The goal of LLNL’s work — driven by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA) and Medtronic — is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.
The research is funded by DARPA’s Restoring Active Memory (RAM) program.
Specifically, the Neural Technology group will seek to develop a neuromodulation system — a sophisticated electronics system to modulate neurons — that will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL’s Center for Bioengineering.
“Currently, there is no effective treatment for memory loss resulting from conditions like TBI,” said LLNL’s project leader Satinderpall Pannu, director of the LLNL’s Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. “This is a tremendous opportunity from DARPA to leverage Lawrence Livermore’s advanced capabilities to develop cutting-edge medical devices that will change the health care landscape.”
LLNL will develop a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients’ brains. The device — implanted into the entorhinal cortex and hippocampus — will allow for stimulation and recording from 64 channels located on a pair of high-density electrode arrays. The entorhinal cortex and hippocampus are regions of the brain associated with memory.
The arrays will connect to an implantable electronics package capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom RF-coil system.

Read more.

Join 4,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Learn “How Computers Work” with Bill Gates, Ladyada and more – From Code.org !

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Maplin collapses as rescue talks fail

Wearables — Learn about stretch

Electronics — Test for interference on the cheap!

Biohacking — Visualizing FLU Data with Wearables

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.