Adafruit is celebrating Lunar New Year🐍 Wednesday 1/29/2025. In combination with MLKDay, shipping could be delayed. Please allow extra time for your order to ship!
Why are cans shaped the way they are? #makereducation
This article from DataGenetics explores the reasoning behind can and food storage manufacturing:
f the goal was to purely maximize the volume of food that could be stored in a container, the result would be a spherical can. A sphere is the shape with the minimum surface area to volume ratio. It could contain the most amount of food for the least amount of can material. However, it would be totally impractical! It would not stay still on a shelf, making display and storage hard. How would you hold it? How would you open it? How could you manufacturer and fill it? When stored in packing boxes, even with hexagonal close packing there would be unused gaps in the storage boxes.
Clearly optimizing purely based on minimizing the material needed for an individual can is not optimal.
If we wanted to use a shape that packed perfectly efficiently, we’d use some kind of cuboid. These would sit and stack nicely on shelves too. They’d be easier to manufacture than spheres, but the edges would be stress points. You occasionally seen cuboid-like containers (corned-beef, spam and sardines are the first that come to mind). Rather than sharp edges, these have filleted (rounded) edges to reduce stress concentrations and to make them easier to manufacture.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 2025 Wraps, Focus on Using Python, Open Source and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey