How do you build the world’s tallest water slide?

NewImage

Smithsonian.com has a super interesting piece on the building of the world’s tallest water slide in Kansa City.

From the moment that Jeff Henry, owner of Schlitterbahn Waterparks in Kansas City, Kansas, looked at his partner John Schooley and told him that he wanted to build the world’s tallest water slide, the two men knew that they were venturing into uncharted territory.

“Water slides, like boats, are an evolutionary technology, in which you do one thing and then you learn something, and then you take another step and learn another thing. In this particular ride we jumped a few steps,” Schooley explains. The ride, dubbed Verrückt (which translates to “insane” in German) measures 168-feet tall, approximately 17 stories high—taller than Niagara Falls—and was officially verifed by Guinness World Records as the tallest water slide in the world.

“We pretty much built the ride in house, from start to finish, with some outside consulting from safety experts and engineers,” Schooley says of the Kansas City, Kansas attraction. “A project like this is really a group effort.”

So how does one go about building the world’s tallest water slide—and more importantly, ensuring it’s safe? Amazingly, it’s little more than trial and error…

“The Verrückt water slide was to be a crossover fusion design between water slides and roller coasters. In some ways it was evolutionary in that we already had experience with steep speed slide geometry, rafts and uphill water coaster technology. In others it was revolutionary in that we had to invent and develop several new systems to operate this very large jump from existing technology,” Schooley explains. To begin, they started by calculating the height, dictated by the requirement that the slide snatch the title of “World’s Tallest Water slide” away from the 134-foot tall Insano Water slide in Brazil. Then they plotted the steepness—at what angle would riders plummet down the slide’s first drop? Schooley and Henry settled on 60 degrees, a fairly steep angle that would send riders zipping down the first drop at nearly 65 miles per hour (the typical water slide has a more gentle slope closer to 45 degrees). For the Verrückt, 60 degrees was deemed steep enough to achieve a sense of weightlessness in the rider, but gradual enough that a raft could still maintain good contact with the slide…

Friction and gravity are the two principle forces that dictate how thrilling a ride down a water slide can be (but they’re not the only forces—a rider’s weight, air resistance and the material of the slide, among other things, all come into play). Riders at the top of a water slide begin the ride at rest; once they begin to plummet down the water slide, gravity pulls them downward, increasing their speed. The rider, or in the case of Verrückt, the rider atop a raft, encounters friction with the slide, slowing them down. The key is to balance a rider’s momentum and friction so that they are able to race down the slide at an exhilirating speed without risking their lives.

Schooley’s models could predict some of the friction and G-forces that would act on a rider plummeting down the Verrückt, but drawing precise conclusions from these calculations is tricky because of the as-of-yet unmentioned major component: water.

“What’s really difficult on these slides is that we can know something about friction with the size of the raft and how much weight will be in it, but when you start adding water into the equation, there’s actually no way to really know what’s going to happen in terms of hydraulic friction forces on it other than testing it,” he explains.

Head over to Smithsonian.com to read the full article.


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.