Origami Robot Inspired By Nature And Art #Biomimicry

Origami Robot inspired by nature and art fold themselves and walk away. by Alex Knapp via Forbes

A team of researchers from Harvard and MIT have developed a new kind of robot – one that’s capable of autonomously folding itself up into particular functional shapes and then going about its tasks.

“Getting a robot to assemble itself autonomously and actually perform a function has been a milestone we’ve been chasing for many years,” researcher Robert J. Wood said in a press release.

The researchers found their inspiration from both nature and art. Part of the inspiration for these robots is origami, where a single flat piece of paper can be folded into a variety of different and functional shapes. They were also inspired by self-assembly in the natural world, such as how chains of amino acids form complex protein shapes, or the way a flower naturally opens up.

Starting from a flat shape, the robots themselves take about four minutes to assemble themselves into the shapes they need, and then walk away. How do they do it? The key lies in the materials that the robots themselves are made of. That’s a 2-dimensional surface of several layers, including paper, flexible circuits, and stretched polystyrene.

(If you grew up in the 1970s or 1980s, you might know “stretched polystyrene” by another name – Shrinky Dinks.)

When the robots are built, there are hinges at key spots that allow the material to fold into different shapes. When triggered by the on-board microcontroller, the circuits send out heat which triggers the stretched polystyrene to harden (just like a Shrinky Dink). Different shapes can be made based on the location of the hinges and where and how much heat is applied.

Once the robot is cooled after the folding process, it’s then able to crawl away to perform whatever task is necessary. (Although right now, the prototype doesn’t do much but fold and crawl – next steps for the team include figuring out different tasks that can be performed.)

One fascinating thing about this process is how cheap it is. The robot itself, all told, only costs about $100 to make as a prototype. And building a robot to function in a particular way takes little more than an hour. The research team also plans on experimenting with other polymers to enable different types of folding and function.

Read more

Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Despite multiple bankruptcies, RadioShack continues to find ways to keep the lights on

Wearables — Molding with glue

Electronics — A few words on inductor resistance

Biohacking — Running Blades

Python for Microcontrollers — Help bring CircuitPython to other languages!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.