Electron Beam Therapy (EBT) is a type of radiotherapy that uses electrons to treat the tumor site. Because of the finite range of electron beams the dose falls off rapidly leaving deeper tissue unaffected by the treatment. Superficial tumors such as those present in skin cancer are a primary location of treatment for EBT. In addition, EBT is sometimes used in conjunction with radiation directly after a mastectomy or lumpectomy.
The scope of each treatment is determined by modifying the amount of energy used. One means of modifying the amount of energy is through the application of a bolus to the site to be treated. A bolus is a mass that has been shaped for application to a particular area where its thickness is differentiated in order to modify the energy that is allowed to pass through it.
Researchers at Dalhousie University and the Nova Scotia Cancer Center in Halifax recently released a paper in the Journal of Applied Clinical Medical Physics in which they discussed the use of 3D printing as a mechanism for creating boluses for electron radiation therapy. An exacting method for the creation of each bolus is required as dosage patterns must be tailored to each patient’s surface structure and cancer presence.
To create a bolus the research team developed an in-house algorithm taking into account dose distribution in terms of coverage, conformity, and homogeneity within the targeted area. The results of the calculation indicate the exact form needed to administer the appropriate dosage. The team had previously studied other methods for bolus design creation, such as fabrication with a milling machine from an electron pencil beam design. Those creations presented problems because of the margin of error inherent in the processes used for their creation, and because of irregularities in individual patient’s surfaces. Therefore, unnecessarily high doses could be delivered to critical structures and tissues immediately underlying the targeted area….
Read more about this unique approach and the data collected so far at 3DPrint.com.
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!
Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!
The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! We also offer the LulzBot TAZ – Open source 3D Printer and the Printrbot Simple Metal 3D Printer in our store. If you’ve made a cool project that combines 3D printing and electronics, be sure to let us know, and we’ll feature it here!