AmpLeaf: Ecological Resonance

Thanks to Ramin for sending this in! View more information on the product here.

AmpLeaf introduces a new cycle of architectural eco-infrastructure that promotes the regeneration of local and native plant species within the Valldaura region. Wind vibration energy acts as a platform for a new dialog between ecological systems and human interaction. AmpLeaf is a synthesized smart surface which is integrated into the anatomy of the forest to experiment from within, using energy directly harvested from the ecosystem and its many agents rather than energy from existing power grids.

With the rise of a new generation of technologies capable of integration on a nano-level, we, as designers, are able to think about our environments on a different scale and recognize the emergent logics that can be tapped into for experimentation. This project aims to make social impacts on the ecosystem, encouraging birds and animals to gather around targeted flora and fauna native to (or marginalized from) the Valldaura region. The goal is to develop infrastructure that works in sync with existing systems, lessening the disparity between densities of biodiversity in the region and creating a richer and more competitive environment.

The Valldaura Self Sufficient Labs site occupies an optimal spot for the exploration of biosphere rejuvenation through passive systems. Located in the Collserola National Park, it is one of many sites that have experienced a notable decrease in diversity of plant and animal life due to nearby development. Many studies by CERFA and the Park Consortium have correlated the subdivision and transformation of land with the marginalization of specific species, their resulting relocation and, in some cases, disappearance from the area.

Project Objectives:

Through simple, integrated, and ecologically sensitive interventions, this project aims to catalyze the slow process of bio-regeneration. By targeting native species of flora and fauna we aim to take advantage of biological phenomena such as ornithochory (seed dispersal by birds), pollination, and biotic fertilization. A multi-functional passive energy system applies energy directly back into the environment from which it is derived and paves the way for symbiotic relationships: mutually beneficial ecological advancements for human and bio-life such as increased soil fertility, strengthened phosphorus, carbon and nitrogen cycles, and insect management.

AmpLeaf is designed to fit the needs of on-site customization and adaptability. All components are included in a minimally packaged format. Each ‘control’ sheet is embedded with the electronics required for energy harvesting, conversion, and light and sound emission. One additional sheet without electronics is provided and can be installed with the control sheet to enhance material reverberation and increased production.

Energy production with AmpLeaf is simple. As wind flows over and between the surfaces, vibration occurs along the rigid materials, activating the nano-generating piezos. Energy is transferred to the ‘control’ corner, where it is stored for use in powering lights and sounds. An integrated LDR light sensor in the FLORA microcontroller takes a light reading after each programmed sleep interval (typical interval is approx 30 min). Based on a value of 1 (daytime), the speaker is activated, playing the programmed bird sound. Based on a value of zero (night), the neopixel LEDs are activated until the next reading.

Variation in the voltage input to energy harvester is due to the variation in generation of current from the piezos, which fluctuates according to material reverberation in the surface. Energy produced from the piezos is trickled into the NI-MH battery over time. Output from the harvester to the battery is constant, albeit in small amounts. Output from the battery to the rest of the system via the FLORA occurs at the 30-minute programmed interval, and differs depending on the function as determined by the light reading.

Unlike conventional wind energy harvesters, this device is quiet and embedded into nature. Using wind vibration energy offers a solution to micro-production of energy which operates at a very low frequency and high level of integration due to the fact that it responds not only to windspeed, but also to its direct environment. The cycle of output from the device is directly linked to the amount of energy input in the surrounding by wind, movements of animals, and human-induced environmental changes.

Read more.


Halloween season is here!
Halloween season is here! Check out all the posts, gift guides, and more!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NewProducts Featuring Adafruit RP2350 22-pin FPC HSTX to DVI Adapter for HDMI Displays!

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — Garden Lights, Bluetooth 6.0, and more!

Maker Business – Adafruit Daily — A look at Boeing’s supply chain and manufacturing process

Electronics – Adafruit Daily — When do I use X10?

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.