Voting resources, early voting, and poll worker information - VOTE. ... Adafruit is open and shipping.
0

Stanford scientists develop water splitter that runs on ordinary AAA battery

NewImage

Scientists from Stanford University have developed a cheap device that uses a AAA battery to split water into hydrogen and oxygen. This hydrogen gas from this device could be used to power fuel cells in zero-emissions vehicles.

In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming.

Now scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis. The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

“Using nickel and iron, which are cheap materials, we were able to make the electrocatalysts active enough to split water at room temperature with a single 1.5-volt battery,” said Hongjie Dai, a professor of chemistry at Stanford. “This is the first time anyone has used non-precious metal catalysts to split water at a voltage that low. It’s quite remarkable, because normally you need expensive metals, like platinum or iridium, to achieve that voltage.”

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical, according to Dai. He and his colleagues describe the new device in a study published in the Aug. 22 issue of the journal Nature Communications.

Read more.



Adafruit has had paid day off for voting for our team for years, if you need help getting that going for your organization, let us know – we can share how and why we did this as well as the good results. Here are some resources for voting by mail, voting in person, and some NY resources for our NY based teams as well. If there are additional resources to add, please let us know – adafruit.com/vote

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 24,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — To make it through a tough business cycle, layoffs should be a last resort

Wearables — Start with too much

Electronics — Desolder with… more solder!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Over 200 CircuitPython compatible boards! #Python #Adafruit #CircuitPython #CircuitPythonDay @micropython @ThePSF

Adafruit IoT Monthly — Mitigating Climate Change with IoT, LoRaWAN Gardens, and more!

Microsoft MakeCode — MakeCode and Wonder Woman 1984 Team Up

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 9/17/2020 featuring Adafruit BrainCraft HAT – Machine Learning for Raspberry Pi 4!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



1 Comment

  1. This is a very interesting development and I complement the scientists for their discovery. If I understand it correctly, and it is certainly possible that I don’t, the break-through is that they are able to get electrolysis at a lower voltage applied, which is nice and may make it easier to generate hydrogen using solar power.

    You aren’t, however, getting something for nothing, though, because the total energy required for electrolysis to take place would still be the same as for higher voltages. In other words, a AAA battery isn’t going to generate enough hydrogen to run your car at highway speeds for an hour.

Sorry, the comment form is closed at this time.