Technology is transforming conservation efforts. Tracking collars on elephants give warning to wildlife rangers when they travel too closes to highways. by Jon Hoekstra via foreignaffairs
Conservation is for the first time beginning to operate at the pace and on the scale necessary to keep up with, and even get ahead of, the planet’s most intractable environmental challenges. New technologies have given conservationists abilities that would have seemed like super powers just a few years ago. We can now monitor entire ecosystems — think of the Amazon rainforest — in nearly real time, using remote sensors to map their three-dimensional structures; satellite communications to follow elusive creatures, such as the jaguar and the puma; and smartphones to report illegal logging.
Such innovations are revolutionizing conservation in two key ways: first, by revealing the state of the world in unprecedented detail and, second, by making available more data to more people in more places. Like most technologies, these carry serious, although manageable, risks: in the hands of poachers, location-tracking devices could prove devastating to the endangered animals they hunt. Yet on balance, technological innovation gives new hope for averting the planet’s environmental collapse and reversing its accelerating rates of habitat loss, animal extinction, and climate change.
CELL PHONES FOR ELEPHANTS
In 2009, I visited the Lewa Wildlife Conservancy, in northern Kenya. A cattle ranch turned rhinoceros and elephant preserve, Lewa has become a model for African conservation, demonstrating how the tourism that wildlife attracts can benefit neighboring communities, providing them with employment and business opportunities. When I arrived at camp, I was surprised — and a little dismayed — to discover that my iPhone displayed five full service bars. So much for a remote wilderness experience, I thought. But those bars make Lewa’s groundbreaking work possible.
Since the mid-1970s, people have been consuming more resources than the planet’s natural capital can replenish.
More than a decade earlier, Iain Douglas-Hamilton, who founded the organization Save the Elephants, had pioneered the use of GPS and satellite communications to study the movements of elephants. At Lewa, Douglas-Hamilton outfitted elephants with tracking collars that connect to the Safaricom mobile network as easily as my cell phone did. These connections allow Lewa’s researchers to effectively call the tracking collars of the conservancy’s elephants and download their location data on demand, all the while plotting their migration between Lewa and the forests flanking Mount Kenya.Today, Lewa uses the collars for more than research, piloting a program to reduce human-elephant conflict that results when elephants raid crops and to provide safer passage for elephants when they move through agricultural and other settled areas. Using accumulated data on elephant migration routes, the conservancy identified and protected ideal migration corridors. It even constructed a highway underpass to reduce the risk of elephants colliding with cars. Lewa also straps tracking collars on problem elephants with a history of raiding crops. If one of the elephants approaches a farm or village, its collar sends a text message to wildlife rangers, who can then quickly locate the animal and move it away in order to prevent any damage. True to their reputation for intelligence, the elephants quickly learn to mind such virtual fences and keep clear of farms.
The Lewa project shows how a relatively simple, low-cost tracking device can transform wildlife conservation. Using data from such devices, conservationists can shape protected areas around predictable migratory patterns — avoiding needless, often fatal confrontations between endangered species and human civilization. For example, Magellanic penguins that forage along the coast of Argentina have long been vulnerable to running into oil when they swim through shipping lanes. Once covered in oil, most penguins struggle to maintain their body temperature and die of hypothermia, and the survivors suffer from health and reproductive problems. In the mid-1990s, P. Dee Boersma, one of the world’s foremost authorities on penguin conservation, discovered that Argentina’s oil pollution was killing as many as 40,000 penguins each year. She used GPS tracking devices, at a time when the technology was on the cutting edge and costly, to document where the birds were foraging. She then worked with Argentinian authorities to move the shipping lanes further offshore, dramatically reducing a mortality rate that could have easily led to the penguins’ extinction.
Tracking collars such as those used on Lewa’s elephants or the Magellanic penguins can cost as much as $5,000 each. But Eric Dinerstein, a leading scientist at World Wildlife Fund, has collaborated with engineers at a cell-phone company to make a GPS tracking device that can be manufactured for less than $300. The use of stronger and smaller components has also made it possible to tag and track a wider variety of species, from jaguars in dense jungle to albatross soaring over the open ocean.