Mantis Shrimp’s Eyes Inspire New Cancer-Detecting Camera
As if The Oatmeal didn’t give us enough reasons to love the mantis shrimp, Gizmag has the story on how researchers are developing cameras capable of detecting a variety of cancerous tissue by mimicking the extraordinarily complex eyes of these bizarre and amazing animals.
The mantis shrimp’s eye consists of two flattened hemispheres split into three regions, with the central band crowded with specialized receptors. This means that each eye possesses trinocular vision and depth perception. In addition, the mantis shrimp has 16 different photoreceptor pigments with 12 reserved for color sensitivity and the others for color filtering.
What this means is that the mantis shrimp has shellfish super vision. Where humans can see only three colors, the mantis shrimp can effectively see nine more colors than we can. Also, it can see both polarized light and multispectral images because each of the 10 thousand individual photocells, called ommatidia, found in eye eye has a pigment cell for color vision and an array of microvilli that perform as extremely efficient polarization filters.
“Humans can’t see [cancerous tissue surrounded by healthy tissue], but a mantis shrimp could walk up to it and hit it,” says Professor Justin Marshall, from the Queensland Brain Institute at UQ. “We see color with hues and shades, and objects that contrast – a red apple in a green tree for example – but our research is revealing a number of animals that use polarized light to detect and discriminate between objects. The camera that we’ve developed in close collaboration with US and UK scientists shoots video and could provide immediate feedback on detecting cancer and monitoring the activity of exposed nerve cells. It converts the invisible messages into colors that our visual system is comfortable with.”
Marshall says that when perfected, the technology could even be adapted to smartphones for self-diagnosis, allowing patients to monitor their own condition, which would free up scarce medical resources. In addition, the ability of the mantis shrimp camera to see nerve cell activity could make it a new tool for neuroscience.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey