Build A Solar Wood Drying Kiln #SolarPower

Untitled

Make a solar power wood drying kiln. via OWIC

The hobbyist or small business owner can save a great deal of money and realize a greater sense of achievement if projects are made from lumber sawn and dried “in house” rather than from purchased lumber. This publication presents the designs for a simple solar kiln; explains the process of obtaining logs and sawing them into lumber; explains the necessary steps in preparing lumber for drying; and offers advice on maintaining optimum lumber drying rates.

BUILDING A SOLAR KILN

Constructing a solar kiln is relatively straightforward and inexpensive. The plans given here have been used to construct over 300 kilns nationwide. The success of this design is in its simplicity and adaptability to any size. The dimensions given are only a suggestion; build a kiln to suit your drying needs.

A kiln constructed to these specifications (Figure 1) will dry 450 board feet of one-inch-thick hardwood lumber in 6 weeks or less of good weather, or 600 board feet of two-inch hardwood lumber in 15 weeks. Softwoods will typically take half the time of hardwoods. Drying times vary with sun intensity, moisture content of lumber and relative humidity.

When deciding on kiln size, consider the maximum capacity of the kiln in board feet to be 10 times the roof area in square feet. For maximum year-round performance, the roof angle of the kiln should be equal to its latitude in degrees north of the equator. Wisconsin’s latitude ranges from 42.5 degrees to 47 degrees (Oregon’s is about the same), so a roof angle of 45 degrees is ideal. Increasing the roof angle to 55 degrees would improve the kiln’s winter performance.

Frame the kiln floor with 2 x 6-inch joists; cover with 5/8-inch plywood top and bottom. For durability, use pressure treated lumber and “exterior” plywood. Space floor joists 16 or 24 inches apart and mount with joist hangers. Insulate the floor with blanket-type or solid foam insulation. Avoid insulations with a foil vapor barrier, as they may trap moisture inside the floor. Do not use poured-in or blown-in insulation. Apply two coats of aluminum- or oil-based paint to the top sheet of plywood (the kiln floor) to prevent moisture from seeping into the floor. Cover with flat black paint for maximum, solar absorption.

Construct the walls of 2 x 4-inch studs and 3/4-inch plywood. Be sure the studs on the side walls frame openings for doors at least as large as the end dimensions of the wood pile. The back wall studs should frame four 1-foot square vent openings, two on top and two on the bottom. Paint the interior walls in the same manner as the floor. Cover vents with screen, to keep birds and rodents out, and simple doors.

Fasten a 3/4-inch plywood fan baffle to the side walls. The fan baffle ensures that air flows through the wood pile rather than over the top of it (Figure 2). Cut holes for mounting two electric fans as close to the roof as possible to eliminate dead hot air pockets in the upper corner. The baffle should extend from the roof to within 6 inches of the lumber pile. A sheet of plastic or canvas can be used to close the gap between the baffle and the lumber pile.

Mount electric fans to the baffle. Temperature can exceed 150 degrees F inside the kiln, so avoid fans with plastic parts that could melt; typically, multispeed, metal window fans are used. Fans should blow towards the front of the kiln (away from top vents).

Raise the kiln off the ground with cinder blocks or railroad ties, or construct a cement foundation. The kiln floor structure will deteriorate rapidly if resting directly on the ground. Align the kiln so the angled roof faces south. Stain the exterior of the kiln with a dark-colored stain. Do not use any covering that is impervious to water and may trap moisture in the insulation, such as oil-based paints.

Cover the kiln roof with one or two layers of translucent fiberglass, plastic film or glass. Two layers will decrease drying times. Fiberglass is inexpensive, resistant to breaking and the easiest to work with. Apply a non-hardening, silicone caulk to the outer surface of the frame to provide a seal between the plastic and the wood. Secure the fiberglass to the frame with 1 x 4-inch treated wood strips.

Read more


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Happy New Year 2025
Happy New Year from Adafruit!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 11/15/2024 Featuring Adafruit bq25185 USB / DC / Solar Charger with 3.3V Buck Board! (Video)

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Open Hardware is In, New CircuitPython and Pi 5 16GB, and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — The 2024 Recap Issue!

Maker Business – Adafruit Daily — Apple to build another chip at TSMC Arizona

Electronics – Adafruit Daily — Low power?

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !


No Comments

No comments yet.

Sorry, the comment form is closed at this time.