The 2014 Hackaday Prize offered fabulous prizes for the best exemplars of an open, clearly documented device involving connected electronics. Committed hardware hacker fl@c@ (we understand that’s pronounced “flatcat”) wasn’t in the habit of opening up their work, but had been thinking that perhaps they should, and this seemed the perfect opportunity to give it a go. They decided to make an entry of one of their current works-in-progress, a DIY Raman spectrometer based on a Raspberry Pi. The project, named ramanPi, made it to the final of the contest, and was declared fifth prize winner at the prize announcement in Munich a couple of weeks ago.
Raman spectroscopy is a molecular identification technique that, like other spectroscopic techniques, works by detecting and analysing the characteristic ways in which substances absorb and emit radiation in various regions of the electromagnetic spectrum. It relies on the phenomenon of Raman scattering, in which a tiny proportion of the light falling on a sample is absorbed and then re-emitted at a different frequency; the shift in frequency is characteristic of the structure of the material, and can be used to identify it.
The ideal molecular identification technique is sensitive (requiring only small quantities of sample), non-destructive of the sample, unambiguous, fast, and cheap; spectroscopic methods perform pretty well against all but the final criterion. This means that fl@c@’s Raman spectrometer, which uses a Raspberry Pi and 3D-printed parts together with readily available off-the-shelf components, removes an obstacle to using a very valuable technique for individuals and organisations lacking a large equipment budget.
Each Friday is PiDay here at Adafruit! Be sure to check out our posts, tutorials and new Raspberry Pi related products. Adafruit has the largest and best selection of Raspberry Pi accessories and all the code & tutorials to get you up and running in no time!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!