Adafruit will not be shipping orders Thanksgiving Day, Thursday November 22, 2018. Expedited orders placed after 11am ET Wednesday November 21 will go out Friday November 23.
0

The Long Road to Maxwell’s Equations

maxwell_640

Great article from IEEE Spectrum about the development of Maxwell’s equations, from his first proposal of the theory up to the proof of all four equations:

Should you wish to pay homage to the great physicist James Clerk Maxwell, you wouldn’t lack for locales in which to do it. There’s a memorial marker in London’s Westminster Abbey, not far from Isaac Newton’s grave. A magnificent statue was recently installed in Edinburgh, near his birthplace. Or you can pay your respects at his final resting place near Castle Douglas, in southwestern Scotland, a short distance from his beloved ancestral estate. They’re fitting monuments to the person who developed the first unified theory of physics, who showed that electricity and magnetism are intimately connected.

But what these landmarks don’t reflect is the fact that, at the time of Maxwell’s death in 1879, his electromagnetic theory—which underpins so much of our modern technological world—was not yet on solid ground.

An extraordinary amount of information about the world—the basic rules by which light behaves, current flows, and magnetism functions—can be boiled down to four elegant equations. Today, these are known collectively as Maxwell’s equations, and they can be found in just about every introductory engineering and physics textbook.

It could be argued that these equations got their start 150 years ago this month, when Maxwell presented his theory uniting electricity and magnetism before the Royal Society of London, publishing a full report the next year, in 1865. It was this work that set the stage for all the great accomplishments in physics, telecommunications, and electrical engineering that were to follow.

But there was a long gap between the presentation and the utilization. The mathematical and conceptual underpinnings of Maxwell’s theory were so complicated and counterintuitive that his theory was largely neglected after it was first introduced.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,700+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Bill Gross’s 7 lessons to help you and your business succeed

Wearables — Emphasize the light

Electronics — = != ==.

Biohacking — The Exercise Connection to Ketones and BDNF

Python for Microcontrollers — Python powers costumes, and community @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.