Printable circuit board re-defines the term PCB


Thanks to Brandon for sending in this great example of the crossover between 3D printing and electronics. Check out more here.

Redefining the term PCB – from “printed circuit board” to “printable circuit board” !


Hearing about people buying SSRs or even mechanical relays instead of just simply using a MosFET kinda hurts my feelings, so I decided to put together a little DIY hack to solve the problem.

In short: mechanical relays SUCK for DC (especially 24V, 200W which is a heavy burden for any mechanical relay to switch). Solid state relays (SSRs) are waaaay overengineered because they’re made for industrial control applications where safety certificates, electrical isolation and things like these matter.

Anyways, I made this little hack which uses a MosFET (rated for 120A actual rms current! Forget any SSR’s or mechanical relay’s current capabilities…) to switch the heated bed’s power from an Ultimaker 1 electronics board without using any current from the UM1’s original power supply.

Of course, you need a second power supply dedicated for the heated bed (recommendations included in the BOM. Don’t forget that these all come without wiring). I strongly recommend using a 24V power supply over 12V, because that means less current, meaning less stress on your wiring and connectors. Less current also means less electromagnetic interference.

The hack includes a printable circuit board – you print the circuit board with your 3D printer, put in the components and solder them using their own “legs” (full instructions in the files). All you need is a soldering station (preferrably with temperature control) and some standard electronics solder.

This design includes an LED indicator that will light up when the heatbed is activated. It’s also fully ESD protected and enclosed.

Don’t be afraid of the long instructions, it’s really easy to solder the components together.

Note that you need to use the case if you want the thing to be protected against ESD effectively. The current design uses self-tapping screws for thermoplastics (aka “plastite screws”). If you really need a design that uses standard M3 screws, tell me. I can adapt the design. You could also just use a drill and drill through the small holes. Then you can put screws through and add nuts on the bottom.

Important: Make sure you don’t put the MosFET relay on something that gets hot (such as the power supply unit)! It will not get warm by itself, but you don’t want it to melt down and short-circuit…

The BOM includes supplier information for I recommend you get the parts from there. They ship worldwide. If you take one of the power supplies listed in the BOM, you should also get free shipping.

Note about the picture of the PCB’s bottom side: Youmagine decided to rotate the picture and crop it. I tried it 3 times, it keeps rotating it. I have no time for this… See the assembly instructions for more pictures 😉

Read more.

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.