New Machine Inspired by Electronics Manufacturing Makes Tissues, Could Eventually Make Full Organs
Inspired by electronics manufacturing technologies like the pick and place, a new machine for building large tissues from living components of three-dimensional micro-tissues could lead to the ability to produce whole organs. From ScienceDaily:
In this case, the parts are not resistors and capacitors, but 3-D microtissues containing thousands to millions of living cells that need a constant stream of fluid to bring them nutrients and to remove waste. The new device is called ‘BioP3’ for pick, place, and perfuse. A team of researchers led by Jeffrey Morgan, a Brown University bioengineer, and Dr. Andrew Blakely, a surgery fellow at Rhode Island Hospital and the Warren Alpert Medical School, introduces BioP3 in a new paper in the journal Tissue Engineering Part C.
Because it allows assembly of larger structures from small living microtissue components, Morgan said, future versions of BioP3 may finally make possible the manufacture of whole organs such as livers, pancreases, or kidneys.
“For us it’s exciting because it’s a new approach to building tissues, potentially organs, layer by layer with large, complex living parts,” said Morgan, professor of molecular pharmacology, physiology and bBiotechnology. “In contrast to 3-D bioprinting that prints one small drop at a time, our approach is much faster because it uses pre-assembled living building parts with functional shapes and a thousand times more cells per part.”
Morgan’s research has long focused on making individual microtissues in various shapes such as spheres, long rods, donut rings and honeycomb slabs. He uses a novel micromolding technique to direct the cells to self-assemble and form these complex shapes. He is a founder of the Providence startup company MicroTissues Inc., which sells such culture-making technology.
Now, the new paper shows, there is a device to build even bigger tissues by combining those living components.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey