Via Phys.org.
By wearing clothes that have been dip-coated in a silver nanowire (AgNW) solution that is highly radiation-insulating, a person may stay so warm in the winter that they can greatly reduce or even eliminate their need for heating their home. Considering that 47% of global energy is spent on indoor heating, and 42% of that specifically for residential heating, such highly insulating clothing could potentially have huge cost savings.
A team of researchers led by Professor Yi Cui, along with PhD student Po-Chun Hsu and others at Stanford University, have published a paper on the AgNW-coated textiles in a recent issue of Nano Letters.
As the researchers explain, most strategies to reduce indoor heating focus on improving the insulation of the buildings, such as by using high R-value insulation and low-emissivity windows. However, a large portion of the energy is still wasted on heating empty space and inanimate objects.
To avoid this waste, the researchers have used a new strategy called “personal thermal management,” which focuses on heating people. They’ve demonstrated that clothing dipped in a solution of metallic nanowires, such as AgNWs, achieves this goal by both providing passive insulation and allowing for active heating when connected to an external power source.
The main advantage of the AgNW-coated clothing is that it reflects over 90% of an individual’s body heat (i.e., infrared radiation) back to the individual. This reflectance is much higher than even the warmest wool sweater, as the average clothing material reflects back only about 20% of body heat.
This increase in reflectance is due to differences in the materials’ emissivity, which is a measure of heat radiation. Low-emissivity materials like silver, which has an emissivity of 0.02, emit less radiation and so provide much better insulation than high-emissivity materials like common textiles, which have an emissivity of about 0.8.
Of course, wearing clothing made completely of silver would be impractical and uncomfortable, not to mention expensive. A main reason for this discomfort is that silver, like all metals, is not breathable. For example, Mylar blankets, which are made of aluminum and plastic, are extremely warm but are not vapor-permeable, causing moisture to accumulate on a person’s skin.
The new AgNW-coated clothing, on the other hand, is breathable due to the nanowires’ porous structure. The large spacing between nanowires of about 300 nm offers plenty of room for water vapor molecules, which are about 0.2 nm, to pass through. The 300-nm spacing is still much too small to allow body heat to pass through, since human body radiation has a wavelength of about 9 µm and so interacts with the nanowire cloth as if it were a continuous metal film, and is reflected.
Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!
My bursting water pipes say I’ll keep my indoor heating 🙂