Make your own human powered generator to charge your phone. via instructables
Mobile phones / Tablets have become an integral part of our life. One big hustle which every mobile user faces is charging the device. Well if you have a power source like AC wall supply or batteries lying around then it is easy but what if you are stuck in a place where there is no power source, like for few days?
I got this idea when a cyclone struck my area and we had no power in the whole city for like 10 days. The phone towers started working from the 2nd day itself but since our smart phone’s charging doesn’t last more than a day or two, it was of no use. That’s when I realised how dependent we are on electricity provided by power stations.
This project will help your phone stay alive in those kind of situations. Remember, my objective is to make a charger with parts which will easily be available.
What we don’t want to use: Batteries, AC household power
What we want to use: Muscle Power (Mechanical Energy)
Solution : DC Motor/Dynamo
I’ll be using a DC motor in this tutorial since it is more easily available than a dynamo. Well technically a DC motor is also a DC generator so when you apply mechanical energy to a DC motor (rotate it’s shaft), it produces some amount of power.
But we have another problem. Depending on the speed at which we rotate the shaft, the voltage across the terminals vary and we don’t want anything above +5 volts for our USB charging. So we need a regulator block which would take in the variable power from the motor and convert it into DC +5V
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Diving into the Raspberry Pi RP2350, Python Survey Results and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey